Connect with us

The Conversation

Whistleblower calls for government transparency as Congress digs for the truth about UFOs

Published

on

Whistleblower calls for government transparency as Congress digs for the truth about UFOs

A congressional subcommittee on unidentified anomalous phenomena met to hear testimony from military officers.
Sarah Silbiger/Bloomberg via Getty Images

Chris Impey, University of Arizona

A congressional subcommittee met on June 26, 2023, to hear testimony from several military officers who allege the government is concealing evidence of UFOs. By holding a hearing on UFOs – now called “unidentified anomalous phenomena” by government agencies – the subcommittee sought to understand whether these UAPs pose a threat to national security.

I’m an astronomer who studies and has written about cosmology, black holes, exoplanets and life in the universe. I’m also on the advisory council for an international group that strategizes how to communicate with an extraterrestrial civilization should the need ever arise.

While the hearings brought attention to UAPs and could lead to more reporting from people who work in the military and aviation, the testimonies did not produce evidence to fundamentally change the understanding of UAPs.

A close-up shot of a blue striped suit and pink tie with a rectangular pin that has a UFO on it and the words 'I still want to believe'
An audience member at the hearing wears an ‘X-Files’ UFO pin.
AP Photo/Nathan Howard

UFO oversight so far

The House subcommittee hearing follows a flurry of activity over the past few years. Public interest in UAPs surged in 2017 after three Navy videos were leaked and The New York Times reported on a shadowy UAP program run by the Pentagon. In June 2021, the Office of the Director of National Intelligence released a report on the phenomena. In November 2021, the Pentagon formed a new group to coordinate efforts to detect and identify objects in restricted airspace.

Then in May 2022, a House Intelligence subcommittee held the first congressional hearing in over half a century on military reports of UAPs. Little new light was shed on the true nature of the sightings, but the officials tried to clarify the situation by ruling things out.

While officials noted 18 occasions in which aerial objects had moved at considerable speed without visible means of propulsion, nobody had found unexplained wreckage or records of the military having either received communications from or having fired shots at UAPs. As such, the subcommittee decided that there was not yet enough evidence to claim UAPs are extraterrestrial.

Most recently, NASA convened a panel in June 2022, which held its first public hearing in May this year. The panel will help NASA advise intelligence agencies and the Department of Defense on how to evaluate mysterious sightings. The panel is considering 800 sightings accumulated over 27 years, with 50 to 100 new reports coming in each month. Sean Kirkpatrick from the Department of Defense said that only 2% to 5% of these are anomalous, and the meeting drew no firm conclusions.

Which brings us to this week’s hearing. Congress is getting frustrated with the lack of transparency over UAP sightings. So the subcommittee is using its overall charge of oversight and accountability to get some answers.

Eyebrow-raising testimony

Three witnesses, all ex-military officers, gave sworn testimony to the subcommittee.

David Fravor was a commander in the U.S. Navy in 2004, stationed on the USS Nimitz, when he and another pilot saw an object behaving inexplicably. Video of the encounter was released by the Department of Defense in 2017 and publicized by The New York Times.

Fravor testified that the technology he witnessed was far superior to anything human beings have. He described objects with no visible means of propulsion carrying out sudden maneuvers that no known technology could achieve.

“What concerns me is that there is no oversight from our elected officials on anything associated with our government possessing or working on craft that we believe are not of this world,” Fravor said.

The second witness, Ryan Graves, was an F-18 pilot for over a decade. While stationed at Virginia Beach in 2014, he says, UAP sightings were so frequent among his crew that they became part of daily briefs. He recounted a situation in which two jets had to take evasive action as they encountered a UAP. The description was striking – a dark gray cube inside a clear sphere – quite different from the classic “flying saucer.”

Graves founded Americans for Safe Aerospace to create a center of support and education for aircrew affected by UAP encounters. He testified that the group has 5,000 members and has taken information from 30 witnesses. Most are commercial pilots at major airlines. He alleged that all UAP videos since 2021 are classified by the Pentagon as secret or higher. Graves also said that only 5% of UAP sightings by military and commercial pilots are reported by the pilots that spot them.

“If everyone could see the sensor and video data that I have, there is no doubt that UAP would be a top priority for our defense, intelligence and scientific communities,” Graves said.

The real bombshell came from David Grusch, an Air Force intelligence officer who retired with the rank of major. His high level of security clearance meant he saw reports that were unknown to the public. He sought whistleblower protection after claiming that the U.S. government was operating with secrecy and above congressional oversight with regards to UAP – even claiming that crashed UAPs had yielded biological material of nonhuman origin. The Pentagon has denied this claim. He also said he’d suffered retaliation after reporting this information to his superiors and to multiple inspectors general.

YouTube video
Grusch testifies that the U.S. government has recovered ‘nonhuman biologics.’

“I was informed, in the course of my official duties, of a multidecade UAP crash-retrieval and reverse-engineering program to which I was denied access,” Grusch said in his opening statement to the subcommittee. The Pentagon has denied the existence of such a program now or in the past.

Calls for transparency

While none of this testimony brought forward viable evidence of a broad government conspiracy, most UAP data is not made public and is held by intelligence agencies or the Pentagon. Lawmakers from both parties called for more government transparency. When questioned, all three witnesses said that UAPs represented a clear threat to national security.

If these testimonies are truthful, UAPs of advanced technology – whether they originate from a foreign adversary or not – that make routine incursions into U.S. airspace are a cause for concern.

For now, the subcommittee will continue its work. A tangible outcome will probably be an anonymous reporting mechanism to overcome the stigma commercial and military pilots feel when they witness a UAP. The push for government transparency will likely intensify, and subcommittee members hope to have a classified briefing to evaluate the claims made by Grusch.

As a scientist, I’m trained to be skeptical, and I know that most UFO sightings have mundane explanations. Visual evidence is also notoriously difficult to interpret, and even the dramatic Navy videos have been debunked. More and better data will help resolve the issue, but the gold standard is physical evidence. If Grusch’s claims of crashed UAPs are ever verified, that will be the first UAP hearing with a truly dramatic outcome.The Conversation

Chris Impey, University Distinguished Professor of Astronomy, University of Arizona

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

AI is giving a boost to efforts to monitor health via radar

Published

on

theconversation.com – Chandler Bauder, Electronics Engineer, U.S. Naval Research Laboratory – 2025-04-30 07:48:00

AI-powered radar could enable contactless health monitoring in the home.
Chandler Bauder

Chandler Bauder, U.S. Naval Research Laboratory and Aly Fathy, University of Tennessee

If you wanted to check someone’s pulse from across the room, for example to remotely monitor an elderly relative, how could you do it? You might think it’s impossible, because common health-monitoring devices such as fingertip pulse oximeters and smartwatches have to be in contact with the body.

However, researchers are developing technologies that can monitor a person’s vital signs at a distance. One of those technologies is radar.

We are electrical engineers who study radar systems. We have combined advances in radar technology and artificial intelligence to reliably monitor breathing and heart rate without contacting the body.

Noncontact health monitoring has the potential to be more comfortable and easier to use than traditional methods, particularly for people looking to monitor their vital signs at home.

How radar works

Radar is commonly known for measuring the speed of cars, making weather forecasts and detecting obstacles at sea and in the air. It works by sending out electromagnetic waves that travel at the speed of light, waiting for them to bounce off objects in their path, and sensing them when they return to the device.

Radar can tell how far away things are, how fast they’re moving, and even their shape by analyzing the properties of the reflected waves.

Radar can also be used to monitor vital signs such as breathing and heart rate. Each breath or heartbeat causes your chest to move ever so slightly – movement that’s hard for people to see or feel. However, today’s radars are sensitive enough to detect these tiny movements, even from across a room.

Advantages of radar

There are other technologies that can be used to measure health remotely. Camera-based techniques can use infrared light to monitor changes in the surface of the skin in the same manner as pulse oximeters, revealing information about your heart’s activity. Computer vision systems can also monitor breathing and other activities, such as sleep, and they can detect when someone falls.

However, cameras often fail in cases where the body is obstructed by blankets or clothes, or when lighting is inadequate. There are also concerns that different skin tones reflect infrared light differently, causing inaccurate readings for people with darker skin. Additionally, depending on high-resolution cameras for long-term health monitoring brings up serious concerns about patient privacy.

side-by-side images, one of a person and the other a verticle series of nested blobs of color
Radar sees the world in terms of how strongly objects in its view reflect the transmitted signals. The resolution of images it can generate are much lower than images cameras produce.
Chandler Bauder

Radar, on the other hand, solves many of these problems. The wavelengths of the transmitted waves are much longer than those of visible or infrared light, allowing the waves to pass through blankets, clothing and even walls. The measurements aren’t affected by lighting or skin tone, making them more reliable in different conditions.

Radar imagery is also extremely low resolution – think old Game Boy graphics versus a modern 4K TV – so it doesn’t capture enough detail to be used to identify someone, but it can still monitor important activities. While it does project energy, the amount does not pose a health hazard. The health-monitoring radars operate at frequencies and power levels similar to the phone in your pocket.

Radar + AI

Radar is powerful, but it has a big challenge: It picks up everything that moves. Since it can detect tiny chest movements from the heart beating, it also picks up larger movements from the head, limbs or other people nearby. This makes it difficult for traditional processing techniques to extract vital signs clearly.

To address this problem we created a kind of “brain” to make the radar smarter. This brain, which we named mm-MuRe, is a neural network – a type of artificial intelligence – that learns directly from raw radar signals and estimates chest movements. This approach is called end-to-end learning. It means that, unlike other radar plus AI techniques, the network figures out on its own how to ignore the noise and focus only on the important signals.

a diagram with two cartoon representations of people on one side, a brain on the other and vertical curved lines in betwenn
In our study, we used AI to transform raw, unprocessed radar signals into vital signs waveforms of one or two people.
Chandler Bauder

We found that this AI enhancement not only gives more accurate results, it also works faster than traditional methods. It handles multiple people at once, for example an elderly couple, and adapts to new situations, even those it didn’t see during training – such as when people are sitting at different heights, riding in a car or standing close together.

Implications for health care

Reliable remote health monitoring using radar and AI could be a major boon for health care. With no need to touch the patient’s skin, risks of rashes, contamination and discomfort could be greatly reduced. It’s especially helpful in long-term care, where reducing wires and devices can make life significantly easier for patients and caregivers.

Imagine a nursing home where radar quietly watches over residents, alerting caregivers immediately if someone has breathing trouble, falls or needs help. It can be implemented as a home system that checks your breathing while you sleep – no wearables required. Doctors could even use radar to remotely monitor patients recovering from surgery or illness.

This technology is moving quickly toward real-world use. In the future, checking your health could be as simple as walking into a room, with invisible waves and smart AI working silently to take your vital signs.The Conversation

Chandler Bauder, Electronics Engineer, U.S. Naval Research Laboratory and Aly Fathy, Professor of Electrical Engineering, University of Tennessee

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post AI is giving a boost to efforts to monitor health via radar appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The article is focused on a scientific and technological development related to health monitoring using radar and artificial intelligence. It provides an overview of the research process, technical details, and potential health care applications without expressing a clear ideological stance. The tone remains neutral, emphasizing the technical capabilities and benefits of the technology, particularly in long-term care and home health monitoring. While it does mention potential privacy concerns with other methods like cameras, it does so without taking a political position, focusing instead on the advantages of radar. The content adheres to factual reporting and avoids overt bias or advocacy, presenting the information in a straightforward and informative manner.

Continue Reading

The Conversation

Forensics tool ‘reanimates’ the ‘brains’ of AIs that fail in order to understand what went wrong

Published

on

theconversation.com – David Oygenblik, Ph.D. Student in Electrical and Computer Engineering, Georgia Institute of Technology – 2025-04-30 07:47:00

Tesla crashes are only the most glaring of AI failures.
South Jordan Police Department via APPEAR

David Oygenblik, Georgia Institute of Technology and Brendan Saltaformaggio, Georgia Institute of Technology

From drones delivering medical supplies to digital assistants performing everyday tasks, AI-powered systems are becoming increasingly embedded in everyday life. The creators of these innovations promise transformative benefits. For some people, mainstream applications such as ChatGPT and Claude can seem like magic. But these systems are not magical, nor are they foolproof – they can and do regularly fail to work as intended.

AI systems can malfunction due to technical design flaws or biased training data. They can also suffer from vulnerabilities in their code, which can be exploited by malicious hackers. Isolating the cause of an AI failure is imperative for fixing the system.

But AI systems are typically opaque, even to their creators. The challenge is how to investigate AI systems after they fail or fall victim to attack. There are techniques for inspecting AI systems, but they require access to the AI system’s internal data. This access is not guaranteed, especially to forensic investigators called in to determine the cause of a proprietary AI system failure, making investigation impossible.

We are computer scientists who study digital forensics. Our team at the Georgia Institute of Technology has built a system, AI Psychiatry, or AIP, that can recreate the scenario in which an AI failed in order to determine what went wrong. The system addresses the challenges of AI forensics by recovering and “reanimating” a suspect AI model so it can be systematically tested.

Uncertainty of AI

Imagine a self-driving car veers off the road for no easily discernible reason and then crashes. Logs and sensor data might suggest that a faulty camera caused the AI to misinterpret a road sign as a command to swerve. After a mission-critical failure such as an autonomous vehicle crash, investigators need to determine exactly what caused the error.

Was the crash triggered by a malicious attack on the AI? In this hypothetical case, the camera’s faultiness could be the result of a security vulnerability or bug in its software that was exploited by a hacker. If investigators find such a vulnerability, they have to determine whether that caused the crash. But making that determination is no small feat.

Although there are forensic methods for recovering some evidence from failures of drones, autonomous vehicles and other so-called cyber-physical systems, none can capture the clues required to fully investigate the AI in that system. Advanced AIs can even update their decision-making – and consequently the clues – continuously, making it impossible to investigate the most up-to-date models with existing methods.

YouTube video
Researchers are working on making AI systems more transparent, but unless and until those efforts transform the field, there will be a need for forensics tools to at least understand AI failures.

Pathology for AI

AI Psychiatry applies a series of forensic algorithms to isolate the data behind the AI system’s decision-making. These pieces are then reassembled into a functional model that performs identically to the original model. Investigators can “reanimate” the AI in a controlled environment and test it with malicious inputs to see whether it exhibits harmful or hidden behaviors.

AI Psychiatry takes in as input a memory image, a snapshot of the bits and bytes loaded when the AI was operational. The memory image at the time of the crash in the autonomous vehicle scenario holds crucial clues about the internal state and decision-making processes of the AI controlling the vehicle. With AI Psychiatry, investigators can now lift the exact AI model from memory, dissect its bits and bytes, and load the model into a secure environment for testing.

Our team tested AI Psychiatry on 30 AI models, 24 of which were intentionally “backdoored” to produce incorrect outcomes under specific triggers. The system was successfully able to recover, rehost and test every model, including models commonly used in real-world scenarios such as street sign recognition in autonomous vehicles.

Thus far, our tests suggest that AI Psychiatry can effectively solve the digital mystery behind a failure such as an autonomous car crash that previously would have left more questions than answers. And if it does not find a vulnerability in the car’s AI system, AI Psychiatry allows investigators to rule out the AI and look for other causes such as a faulty camera.

Not just for autonomous vehicles

AI Psychiatry’s main algorithm is generic: It focuses on the universal components that all AI models must have to make decisions. This makes our approach readily extendable to any AI models that use popular AI development frameworks. Anyone working to investigate a possible AI failure can use our system to assess a model without prior knowledge of its exact architecture.

Whether the AI is a bot that makes product recommendations or a system that guides autonomous drone fleets, AI Psychiatry can recover and rehost the AI for analysis. AI Psychiatry is entirely open source for any investigator to use.

AI Psychiatry can also serve as a valuable tool for conducting audits on AI systems before problems arise. With government agencies from law enforcement to child protective services integrating AI systems into their workflows, AI audits are becoming an increasingly common oversight requirement at the state level. With a tool like AI Psychiatry in hand, auditors can apply a consistent forensic methodology across diverse AI platforms and deployments.

In the long run, this will pay meaningful dividends both for the creators of AI systems and everyone affected by the tasks they perform.The Conversation

David Oygenblik, Ph.D. Student in Electrical and Computer Engineering, Georgia Institute of Technology and Brendan Saltaformaggio, Associate Professor of Cybersecurity and Privacy, and Electrical and Computer Engineering, Georgia Institute of Technology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Forensics tool ‘reanimates’ the ‘brains’ of AIs that fail in order to understand what went wrong appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The article focuses on the development of a forensic tool, AI Psychiatry, designed to investigate the failure of AI systems. It provides technical insights into how this tool can help investigate and address AI failures, particularly in autonomous vehicles, without promoting any ideological stance. The content is centered on technological advancements and their practical applications, with an emphasis on problem-solving and transparency in AI systems. The tone is neutral, focusing on factual reporting about AI forensics and the technical capabilities of the system. There is no discernible political bias in the article, as it largely sticks to technical and academic subjects without introducing political viewpoints.

Continue Reading

The Conversation

Young bats learn to be discriminating when listening for their next meal

Published

on

theconversation.com – Logan S. James, Research Associate in Animal Behavior, The University of Texas at Austin – 2025-04-29 18:07:00

A frog-eating bat approaches a túngara frog, one of its preferred foods.
Grant Maslowski

Logan S. James, The University of Texas at Austin; Rachel Page, Smithsonian Institution, and Ximena Bernal, Purdue University

It is late at night, and we are silently watching a bat in a roost through a night-vision camera. From a nearby speaker comes a long, rattling trill.

Cane toad’s rattling trill call.

The bat briefly perks up and wiggles its ears as it listens to the sound before dropping its head back down, uninterested.

Next from the speaker comes a higher-pitched “whine” followed by a “chuck.”

Túngara frog’s ‘whine chuck’ call.

The bat vigorously shakes its ears and then spreads its wings as it launches from the roost and dives down to attack the speaker.

Bats show tremendous variation in the foods they eat to survive. Some species specialize on fruits, others on insects, others on flower nectar. There are even species that catch fish with their feet.

Bat eating frog
The calls male frogs use to attract mates also attract eavesdropping predators. Here, a frog-eating bat consumes an unlucky male túngara frog.
Marcos Guerra, Smithsonian Tropical Research Institute

At the Smithsonian Tropical Research Institute in Panama, we’ve been studying one species, the fringe-lipped bat (Trachops cirrhosus), for decades. This bat is a carnivore that specializes in feeding on frogs.

Male frogs from many species call to attract female frogs. Frog-eating bats eavesdrop on those calls to find their next meal. But how do the bats come to associate sounds and prey?

We were interested in understanding how predators that eavesdrop on their prey acquire the ability to discriminate between tasty and dangerous meals. We combined our expertise on animal behavior, bat cognition and frog communication to investigate.

How do bats know the sound of a tasty meal?

There are nearly 8,000 frog and toad species in the world, and each one has a unique call. For instance, the first rattling call that we played from our speaker came from a large and toxic cane toad. The second “whine chuck” came from the túngara frog, a preferred prey species for these bats. Just as herpetologists can tell a frog species by its call, frog-eating bats can use these calls to identify the best meal.

Over the years, our research team has learned a great deal from frog-eating bats about how sound and echolocation are used to find prey, as well as the role of learning and memory in foraging success. In our newly published study, we focused on how associations between the sounds a bat hears and the prey quality it expects arise within the lifespan of an individual bat.

Bat capturing frog from a pond
Adult bats like the one pictured have extensive acoustic repertoires and remember specific frog calls year after year. Young bats must learn which calls to respond to – and, critically, which to ignore – over time through experience.
Grant Maslowski

We considered whether the associations between sound and a delicious meal are an evolved specialty that bats are born with. But this possibility seemed unlikely because the bat species we study has a large geographic distribution across Central and South America, and the species of frogs found across this range vary tremendously.

Instead, we hypothesized that bats learn to associate different sounds with food as they grow up. But we had to test this idea.

First, we and our collaborators spent time in the forest and at ponds to record the mating calls from 15 of the most common frog and toad species in our study area in Panama.

Researcher untangles a bat from a finely woven mistnet at night.
Rachel Page, one of the lead authors on the study, takes a bat out of a mist net in Panama.
Jorge Alemán, Smithsonian Tropical Research Institute

Then, we set up mist nets along streams in Soberanía National Park to capture wild bats for the study.

Frog call, bat response

For the testing, each bat was housed individually in a large, outdoor flight chamber. From a speaker on the ground in the center, we played calls from one frog species on loop for 30 seconds and measured the behavior of the bat, which was hanging from a cloth roost. As we expected, adult bats were generally uninterested in the sounds of species that were unpalatable, such as those with toxins or those that are too large for the bat to carry.

But it was a different story for young bats. Juveniles responded with significantly more predatory behaviors in response to the calls of toxic toads compared with the adults. They also responded more weakly than adults to the sounds of túngara frogs, a palatable, abundant prey that adult bats prefer.

Thus it seems that juvenile bats must learn the associations between sounds and food over the course of their lives. As they grow up, we believe they learn to ignore the calls of frogs that aren’t worth the trouble and zero in on the calls of frogs that will be a good meal.

To better understand how sounds drive prey associations, we measured the acoustic properties of the different calls. We found that some of the most noticeable features of the calls correlated with body size: Larger frogs produce lower-frequency calls – that is, their voices are deeper. Both the adult and juvenile bats responded more strongly to larger species, which would provide larger meals.

However, there was a clear exception in the responses of adults, where the toxic toads and very large frogs elicited much weaker responses than expected for their body size. This finding led us to hypothesize that bats have early biases to pay attention to sounds associated with larger body size. Then they must learn through experience that meal quality is not only about size. Some large meals are toxic or impossible to carry, making them unpalatable.

YouTube video
Once the researchers have studied each frog-eating bat for a few days, they safely release it where it was originally captured. Footage courtesy of Léna de Framond-Bénard and Eric de Framond-Bénard, compiled by Caroline Rogan.

After the bats spent a few days with us, we released each one back at its original site of capture. The bats departed, taking with them a small RFID tag, just like the ones pet owners use to identify their dogs and cats, in case we meet again as part of a future study.

As the bats go on with their lives in the wild, we continue our quest to deepen our understanding of the subtleties of information discrimination. How do individuals weed through information overload to make choices that make sense and benefit them? That’s the same challenge we all face each day.The Conversation

Logan S. James, Research Associate in Animal Behavior, The University of Texas at Austin; Rachel Page, Staff Scientist, Smithsonian Tropical Research Institute, Smithsonian Institution, and Ximena Bernal, Professor of Biological Sciences, Purdue University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Young bats learn to be discriminating when listening for their next meal appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The content of this article is a scientific and factual exploration of bat behavior, specifically focusing on the learning processes of young bats in identifying suitable prey based on sound cues. The language used is neutral, without any ideological stance or persuasive elements aimed at pushing a particular viewpoint. The piece primarily conveys research findings and observations made by scientists. The framing is academic and informative, with no evident political, social, or controversial implications influencing the tone. It adheres to neutral, factual reporting and does not present any discernible bias in terms of ideology or political orientation.

Continue Reading

Trending