Connect with us

The Conversation

Ticks carry decades of history in each troublesome bite

Published

on

theconversation.com – Sean Lawrence, Assistant Professor of History, West Virginia University – 2025-06-18 07:45:00


Ticks are the most common disease-carrying parasites in the U.S., spreading illnesses like Lyme disease, babesiosis, and Rocky Mountain spotted fever. Human actions—like 18th- and 19th-century deforestation in the Northeast—led to regrowth of forests without predators, causing deer and tick populations to surge. In California, urban sprawl fragments habitats, increasing tick infection rates. Historical livestock management in Texas curbed cattle fever by controlling tick movement. Globally, shifts in land use, such as Ottoman Empire policies forcing nomads to settle, expanded tick habitats and disease spread. Ultimately, ticks thrive due to environmental changes largely driven by human activity.

The black-legged tick, or deer tick, Ixodes scapularis, can transmit Lyme disease and other health hazards.
U.S. Centers for Disease Control and Prevention

Sean Lawrence, West Virginia University

When you think about ticks, you might picture nightmarish little parasites, stalking you on weekend hikes or afternoons in the park.

Your fear is well-founded. Tick-borne diseases are the most prevalent vector-borne diseases – those transmitted by living organisms – in the United States. Each tick feeds on multiple animals throughout its life, absorbing viruses and bacteria along the way and passing them on with its next bite. Some of those viruses and bacteria are harmful to humans, causing diseases that can be debilitating and sometimes lethal without treatment, such as Lyme, babesiosis and Rocky Mountain spotted fever.

But contained in every bite of this infuriating, insatiable pest is also a trove of social, environmental and epidemiological history.

In many cases, human actions long ago are the reason ticks carry these diseases so widely today. And that’s what makes ticks fascinating for environmental historians like me.

Two small ticks on a person' index finger. The nymph could pass for a freckle.
Ticks can be tiny and hard to spot. This is an adult and nymph Ixodes scapularis on an adult’s index finger.
CDC

Changing forests fueled tick risks

During the 18th and 19th centuries, settlers cleared more than half the forested land across the northeastern U.S., cutting down forests for timber and to make way for farms, towns and mining operations. With large-scale land clearing came a sharp decline in wildlife of all kinds. Predators such as bears and wolves were driven out, as were deer.

As farming moved westward, Northeasterners began to recognize the ecological and economic value of trees, and they returned millions of acres to forest.

The woods regrew. Plant-eaters such as deer returned, but the apex predators that once kept their populations in check did not.

As a result, deer populations grew rapidly. With the deer came deer ticks (Ixodes scapularis) carrying borrelia burgdorferi, the bacterium that causes Lyme disease. When a tick feeds on an infected animal, it can take up the bacteria. The tick can pass the bacteria to its next victim. In humans, Lyme disease can cause fever and fatigue, and if left untreated it can affect the nervous system.

The eastern U.S. became a global hot spot for tick-borne Lyme disease starting around the 1970s. Lyme disease affected over 89,000 Americans in 2023, and possibly many more.

Californians move into tick territory

For centuries, changing patterns of human settlements and the politics of land use have shaped the role of ticks and tick-borne illnesses within their environments.

In short, humans have made it easier for ticks to thrive and spread disease in our midst.

In California, the Northern Inner Coast and Santa Cruz mountain ranges that converge on San Francisco from the north and south were never clear-cut, and predators such as mountain lions and coyotes still exist there. But competition for housing has pushed human settlement deeper into wildland areas to the north, south and east of the city, reshaping tick ecology there.

A range map for the western black-legged tick.
National Center for Emerging and Zoonotic Infectious Diseases

While western black-legged ticks (Ixodes pacificus) tend to swarm in large forest preserves, the Lyme-causing bacterium is actually more prevalent in small, isolated patches of greenery. In these isolated patches, rodents and other tick hosts can thrive, safe from large predators, which need more habitat to move freely. But isolation and lower diversity also means infections are spread more easily within the tick’s host populations.

People tend to build isolated houses in the hills, rather than large, connected developments. As the Silicon Valley area south of San Francisco sprawls outward, this checkerboard pattern of settlement has fragmented the natural landscape, creating a hard-to-manage public health threat.

Fewer hosts, more tightly packed, often means more infected hosts, proportionally, and thus more dangerous ticks.

A magnified view of a tick's mouth.
A tick’s mouth is barbed so it can hold on as it draws blood over hours.
National Institute of Allergy and Infectious Diseases

Six counties across these ranges, all surrounding and including San Francisco, account for 44% of recorded tick-borne illnesses in California.

A lesson from Texas cattle ranches

Domesticated livestock have also shaped the disease threat posed by ticks.

In 1892, at a meeting of cattle ranchers at the Stock Raiser’s Convention in Austin, Texas, Dr. B.A. Rogers introduced a novel theory that ticks were behind recent devastating plagues of Texas cattle fever. The disease had arrived with cattle imported from the West Indies and Mexico in the 1600s, and it was taking huge tolls on cattle herds. But how the disease spread to new victims had been a mystery.

A detailed illustration of a tick, drawn at the time people were debating the tick's role in cattle fever.
A 1905 illustration of Rhipicephalus annulatus, a hard tick that causes cattle fever.
Nathan Banks, A treatise on the Acarina, or mites. Proceedings of the United States National Museum

Editors of Daniel’s Texas Medical Journal found the idea of ticks spreading disease laughable and lampooned the hypothesis, publishing a satire of what they described as an “early copy” of a forthcoming report on the subject.

The tick’s “fluid secretion, it is believed, is the poison which causes the fever … [and the tick] having been known to chew tobacco, as all other Texans do, the secretion is most probably tobacco juice,” they wrote.

Fortunately for the ranchers, not to mention the cows, the U.S. Department of Agriculture sided with Rogers. Its cattle fever tick program, started in 1906, curbed cattle fever outbreaks by limiting where and when cattle should cross tick-dense areas.

A person holds open a calf's ear to show several engorged ticks.
Engorged ticks feed on a calf’s ear.
Alan R Walker, CC BY-NC-SA

By 1938, the government had established a quarantine zone that extended 580 miles by 10 miles along the U.S.-Mexico border in South Texas Brush Country, a region favored by the cattle tick.

This innovative use of natural space as a public health tool helped to functionally eradicate cattle fever from 14 Southern states by 1943.

Ticks are products of their environment

When it comes to tick-borne diseases the world over, location matters.

Take the hunter tick (Hyalomma spp.) of the Mediterranean and Asia. As a juvenile, or nymph, these ticks feed on small forest animals such as mice, hares and voles, but as an adult they prefer domesticated livestock.

For centuries, this tick was an occasional nuisance to nomadic shepherds of the Middle East. But in the 1850s, the Ottoman Empire passed laws to force nomadic tribes to become settled farmers instead. Unclaimed lands, especially on the forested edges of the steppe, were offered to settlers, creating ideal conditions for hunter ticks.

As a result, farmers in what today is Turkey saw spikes in tick-borne diseases, including a virus that causes Crimean-Congo hemorrhagic fever, a potentially fatal condition.

Where to check for ticks and how to remove them.

It’s probably too much to ask for sympathy for any ticks you meet this summer. They are bloodsucking parasites, after all.

Still, it’s worth remembering that the tick’s malevolence isn’t its own fault. Ticks are products of their environment, and humans have played many roles in turning them into the harmful parasites that seek us out today.

This article has been updated to clarify that ticks spread alongside the deer population.The Conversation

Sean Lawrence, Assistant Professor of History, West Virginia University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Ticks carry decades of history in each troublesome bite appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

This content provides a fact-based, historical, and scientific overview of tick-borne diseases and their environmental context without promoting a specific political ideology. It discusses human impacts on ecology and public health in a neutral tone, focusing on empirical evidence and historical examples rather than partisan viewpoints. The article emphasizes the complex interactions between humans, environment, and disease, reflecting an objective approach typical of centrist or nonpartisan informational sources.

The Conversation

Chaos gardening – wild beauty, or just a mess? A sustainable landscape specialist explains the trend

Published

on

theconversation.com – Deryn Davidson, Sustainable Landscape State Specialist, Extension, Colorado State University – 2025-08-19 07:35:00


Chaos gardening is a trending, informal practice of scattering mixed seeds—often leftover or wildflower mixes—onto soil with little planning, resulting in a dense, colorful garden. It appeals as a low-pressure, playful alternative to traditional garden design, which can feel intimidating and time-consuming. Success depends on some “guardrails”: choosing compatible, region-appropriate plants, prepping the site, and supporting pollinators with native flowers. However, chaos gardening isn’t ecological restoration and requires maintenance to thrive. While not a replacement for curated gardens, it can inspire novice gardeners, encouraging experimentation, connection with nature, and appreciation of biodiversity through a more intuitive gardening approach.

A mix of annuals and perennials can look colorful and carefree.
Deryn Davidson

Deryn Davidson, Colorado State University

If you’ve spent any time in the gardening corners of social media lately, you’ve likely come across a trend called “chaos gardening.”

The name alone is eye-catching – equal parts fun, rebellious and slightly alarming. Picture someone tossing random seeds into bare soil, watering once or twice, and ending up with a backyard jungle of blooms. No rows, no color coordination, no spacing charts. Just sprinkle and hope for the best.

As a sustainable landscape specialist at Colorado State University Extension, I think a lot about how to help people make designed landscapes more sustainable. Occasionally, a new trend like this one crops up claiming to be the silver bullet of gardening – supposedly it saves water, saves the bees and requires no maintenance.

But what is chaos gardening, really? And does it work? As with most viral trends, the answer is: sometimes.

What chaos gardening is and isn’t

At its core, chaos gardening is the practice of mixing a wide variety of seeds, often including leftover packets, wildflower mixes, or cut flower favorites, and scattering them over a planting area with minimal planning.

The goal is to create a dense, colorful garden that surprises you with its variety. For many, it’s a low-pressure, joyful way to experiment.

But chaos gardening isn’t the same as ecological restoration, pollinator meadow planting or native prairie establishment. Unlike chaos gardening, all of these techniques rely on careful species selection, site prep and long-term management.

Chaos gardening is a bit like making soup from everything in your pantry – it might be delicious, but there are no guarantees.

Chaos gardening’s appeal

One reason chaos gardening may be catching on is because it sidesteps the rules of garden design. A traditional landscape design approach is effective and appropriate for many settings, but it is a time investment and can feel intimidating. Design elements and principles, and matching color schemes, don’t fit everyone’s style or skill set.

A flower bed with a curved border, and curved rows of white and pink flowers, with equally spaced hedges and bushes
Organized and manicured home gardens such as this can be stressful to maintain.
Elenathewise/iStock via Getty Images Plus

Even the apparently relaxed layers of blooms and informal charm of an English cottage garden actually result from careful planning. Chaos gardening, by contrast, lets go of control. It offers a playful, forgiving entry point into growing things. In a way, chaos gardening is an antidote to the pressure of perfection, especially the kind found in highly curated, formal landscapes.

There’s also the allure of ease. People want gardening to be simple. If chaos gardening brings more people into the joy and mess of growing things, I consider that a win in itself. Broader research has found that emotional connection and accessibility are major motivators for gardening, often more than environmental impact.

When does chaos gardening work?

The best outcomes from chaos gardening happen when the chaos has a few guardrails:

  • Choose plants with similar needs. Most successful chaos gardens rely on sun-loving annuals that grow quickly and bloom prolifically, like zinnias, cosmos, marigolds, snapdragons and sunflowers. These are also excellent cut flowers to use in bouquets, which makes them doubly rewarding.

  • Consider your region. A chaos garden that thrives in Colorado might flop in North Carolina. It is beneficial to select seed mixes or individual varieties suited to your area since factors like soil type and growing season length matter. Different plants have unique needs beyond just sun and water; soil pH, cold hardiness and other conditions can make a big difference.

  • Think about pollinators. Mixing in nectar- and pollen-rich flowers native to North America, such as black-eyed Susans, bee balm or coneflowers, provides valuable resources for native bees, butterflies, moths and other local pollinators. These species benefit even more if you plan your garden with phenology – that is, nature’s calendar – in mind. By maintaining blooms from early spring through late fall, you ensure a steady food supply throughout the growing season. Plus, a diverse plant palette supports greater pollinator abundance and diversity.

  • Prep your site. Even “chaos” needs a little order. Removing weeds, loosening the top layer of soil and watering regularly, especially during germination when seeds are sprouting, will dramatically improve your results. Successful seed germination requires direct seed-to-soil contact and consistent moisture; if seeds begin to grow and then dry out, many species will not survive.

When does chaos gardening not work?

There are a few key pitfalls to chaos gardening that often get left out of the online hype:

  • Wrong plant, wrong place. If your mix includes shade-loving plants and your garden is in full sun, or drought-tolerant plants whose seeds end up in a soggy low spot, they’ll struggle to grow.

  • Invasive species and misidentified natives. Some wildflower mixes, especially inexpensive or mass-market ones, claim to be native but actually contain non-native species that can spread beyond your garden and become invasive. While many non-natives are harmless, some spread quickly and disrupt natural ecosystems. Check seed labels carefully and choose regionally appropriate native or adapted species whenever possible.

  • Soil, sun and water still matter. Gardening is always a dialogue with place. Even if you’re embracing chaos, taking notes, observing how light moves through your space, and understanding your soil type will help you know your site better, and choose appropriate plants.

  • Maintenance is still a thing. Despite the “toss and walk away” aesthetic, chaos gardens still require care. Watering, weeding and eventually cutting back or removing spent annuals are all part of the cycle.

Beyond the hashtag

Beneath the chaos gardening memes, there’s something real happening: a growing interest in a freer, more intuitive way of gardening. And that’s worth paying attention to.

Once someone has success with a zinnia or cosmos, they may be inspired to try more gardening. They might start noticing which flowers the bees are visiting in their garden. They may discover native plants and pay attention to the soil they are tending, seeing how both are part of a larger, living system. A chaotic beginning can become something deeper.

An orange and black butterfly perched on top of a flowerhead with small, pink flowers
Choosing nectar-rich flowers such as milkweed for your seed mix can help local pollinators.
Brian Woolman/iStock via Getty Images Plus

Chaos gardening might not replace the structured borders of a manicured garden or a carefully curated pollinator patch, but it might get someone new into the garden. It might lower the stakes, invite experimentation and help people see beauty in abundance rather than control.

If that’s the entry point someone needs, then let the chaos begin.The Conversation

Deryn Davidson, Sustainable Landscape State Specialist, Extension, Colorado State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Organized and manicured home gardens such as this can be stressful to maintain.
Elenathewise/iStock via Getty Images Plus

Even the apparently relaxed layers of blooms and informal charm of an English cottage garden actually result from careful planning. Chaos gardening, by contrast, lets go of control. It offers a playful, forgiving entry point into growing things. In a way, chaos gardening is an antidote to the pressure of perfection, especially the kind found in highly curated, formal landscapes.

There’s also the allure of ease. People want gardening to be simple. If chaos gardening brings more people into the joy and mess of growing things, I consider that a win in itself. Broader research has found that emotional connection and accessibility are major motivators for gardening, often more than environmental impact.

When does chaos gardening work?

The best outcomes from chaos gardening happen when the chaos has a few guardrails:

  • Choose plants with similar needs. Most successful chaos gardens rely on sun-loving annuals that grow quickly and bloom prolifically, like zinnias, cosmos, marigolds, snapdragons and sunflowers. These are also excellent cut flowers to use in bouquets, which makes them doubly rewarding.

  • Consider your region. A chaos garden that thrives in Colorado might flop in North Carolina. It is beneficial to select seed mixes or individual varieties suited to your area since factors like soil type and growing season length matter. Different plants have unique needs beyond just sun and water; soil pH, cold hardiness and other conditions can make a big difference.

  • Think about pollinators. Mixing in nectar- and pollen-rich flowers native to North America, such as black-eyed Susans, bee balm or coneflowers, provides valuable resources for native bees, butterflies, moths and other local pollinators. These species benefit even more if you plan your garden with phenology – that is, nature’s calendar – in mind. By maintaining blooms from early spring through late fall, you ensure a steady food supply throughout the growing season. Plus, a diverse plant palette supports greater pollinator abundance and diversity.

  • Prep your site. Even “chaos” needs a little order. Removing weeds, loosening the top layer of soil and watering regularly, especially during germination when seeds are sprouting, will dramatically improve your results. Successful seed germination requires direct seed-to-soil contact and consistent moisture; if seeds begin to grow and then dry out, many species will not survive.

When does chaos gardening not work?

There are a few key pitfalls to chaos gardening that often get left out of the online hype:

  • Wrong plant, wrong place. If your mix includes shade-loving plants and your garden is in full sun, or drought-tolerant plants whose seeds end up in a soggy low spot, they’ll struggle to grow.

  • Invasive species and misidentified natives. Some wildflower mixes, especially inexpensive or mass-market ones, claim to be native but actually contain non-native species that can spread beyond your garden and become invasive. While many non-natives are harmless, some spread quickly and disrupt natural ecosystems. Check seed labels carefully and choose regionally appropriate native or adapted species whenever possible.

  • Soil, sun and water still matter. Gardening is always a dialogue with place. Even if you’re embracing chaos, taking notes, observing how light moves through your space, and understanding your soil type will help you know your site better, and choose appropriate plants.

  • Maintenance is still a thing. Despite the “toss and walk away” aesthetic, chaos gardens still require care. Watering, weeding and eventually cutting back or removing spent annuals are all part of the cycle.

Beyond the hashtag

Beneath the chaos gardening memes, there’s something real happening: a growing interest in a freer, more intuitive way of gardening. And that’s worth paying attention to.

Once someone has success with a zinnia or cosmos, they may be inspired to try more gardening. They might start noticing which flowers the bees are visiting in their garden. They may discover native plants and pay attention to the soil they are tending, seeing how both are part of a larger, living system. A chaotic beginning can become something deeper.

An orange and black butterfly perched on top of a flowerhead with small, pink flowers

Choosing nectar-rich flowers such as milkweed for your seed mix can help local pollinators.
Brian Woolman/iStock via Getty Images Plus

Chaos gardening might not replace the structured borders of a manicured garden or a carefully curated pollinator patch, but it might get someone new into the garden. It might lower the stakes, invite experimentation and help people see beauty in abundance rather than control.

If that’s the entry point someone needs, then let the chaos begin.

Read More

The post Chaos gardening – wild beauty, or just a mess? A sustainable landscape specialist explains the trend appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

This content focuses on gardening practices and environmental awareness without promoting any particular political ideology. It presents information in a balanced, informative manner, emphasizing sustainability and ecological considerations while avoiding partisan language or viewpoints. The article encourages accessibility and experimentation in gardening, appealing broadly without aligning with left- or right-leaning political perspectives.

Continue Reading

The Conversation

RFK Jr.’s plans to overhaul ‘vaccine court’ system would face legal and scientific challenges

Published

on

theconversation.com – Anna Kirkland, Professor of Women’s and Gender Studies, University of Michigan – 2025-08-15 07:39:00


The Vaccine Injury Compensation Program (VICP), established in 1986, provides a legal process for compensating individuals harmed by vaccines while protecting manufacturers from lawsuits. Health Secretary Robert F. Kennedy Jr. criticizes the system as biased and slow, proposing reforms or dismantling it. Experts acknowledge the program needs updates, such as increasing judges, adjusting damage caps, and expanding vaccine coverage. However, significant changes face legal and political challenges. Kennedy’s suggestion to add unproven injuries like autism to the list contradicts scientific consensus and may face lawsuits. Proposals to move claims to regular courts could hinder compensation efforts and threaten vaccine supply stability.

The Vaccine Injury Compensation Program was established in 1986 by an act of Congress.
MarsBars/iStock via Getty Images Plus

Anna Kirkland, University of Michigan

For almost 40 years, people who suspect they’ve been harmed by a vaccine have been able to turn to a little-known system called the Vaccine Injury Compensation Program – often simply called the vaccine court.

Health and Human Services Secretary Robert F. Kennedy Jr. has long been a critic of the vaccine court, calling it “biased” against compensating people, slow and unfair. He has said that he wants to “revolutionize” or “fix” this system.

I’m a scholar of law, health and medicine. I investigated the history, politics and debates about the Vaccine Injury Compensation Program in my book “Vaccine Court: The Law and Politics of Injury.”

Although vaccines are extensively tested and monitored, and are both overwhelmingly safe for the vast majority of people and extremely cost-effective, some people will experience a harmful reaction to a vaccine. The vaccine court establishes a way to figure out who those people are and to provide justice to them.

Having studied the vaccine court for 15 years, I agree that it could use some fixing. But changing it dramatically will be difficult and potentially damaging to public health.

Deciphering vaccine injuries

The Vaccine Injury Compensation Program is essentially a process that enables doctors, lawyers, patients, parents and government officials to determine who deserves compensation for a legitimate vaccine injury.

It was established in 1986 by an act of Congress to solve a specific social problem: possible vaccine injuries to children from the whole-cell pertussis vaccine. That vaccine, which was discontinued in the U.S. in the 1990s, could cause alarming side effects like prolonged crying and convulsions. Parents sued vaccine manufacturers, and some stopped producing vaccines.

Congress was worried that lawsuits would collapse the country’s vaccine supply, allowing diseases to make a comeback. The National Childhood Vaccine Injury Act of 1986 created the vaccine court process and shielded vaccine manufacturers from these lawsuits.

Here’s how it works: A person who feels they have experienced a vaccine-related injury files a claim to be heard by a legal official called a special master in the U.S. Court of Federal Claims. The Health and Human Services secretary is named as the defendant and is represented by Department of Justice attorneys.

A syringe leaning against a gavel on a white background
Many experts agree that the vaccine compensation program could use some updates.
t_kimura via iStock / Getty Images Plus

Doctors who work for HHS evaluate the medical records and make a recommendation about whether they think the vaccine caused the person’s medical problem. Some agreed-upon vaccine injuries are listed for automatic compensation, while other outcomes that are scientifically contested go through a hearing to determine if the vaccine caused the problem.

Awards come from a trust fund, built up through a 75-cent excise tax on each dose of covered vaccine sold. Petitioners’ attorneys who specialize in vaccine injury claims are paid by the trust fund, whether they win or lose.

Some updates are needed

Much has changed in the decades since Congress wrote the law, but Congress has not enacted updates to keep up.

For instance, the law supplies only eight special masters to hear all the cases, but the caseload has risen dramatically as more vaccines have been covered by the law. It set a damages cap of US$250,000 in 1986 but did not account for inflation. The statute of limitations for an injury is three years, but in my research, I found many people file too late and miss their chance.

When the law was written, it only covered vaccines recommended for children. In 2023, the program expanded to include vaccines for pregnant women. Vaccines just for adults, like shingles, are not covered. COVID-19 vaccine claims go to another system for emergency countermeasures vaccines that has been widely criticized. These vaccines could be added to the program, as lawyers who bring claims there have advocated.

These reform ideas are “friendly amendments” with bipartisan support. Kennedy has mentioned some of them, too.

A complex system is hard to revolutionize

Kennedy hasn’t publicly stated enough details about his plan for the vaccine court to reveal the changes he intends to make. The first and least disruptive course of action would be to ask Congress to pass the bipartisan reforms noted above.

But some of his comments suggest he may seek to dismantle it, not fix it. None of his options are straightforward, however, and consequences are hard to predict.

Robert F. Kennedy Jr., Secretary of the Department of Health and Human Services, testifying in Congress
HHS Secretary Robert Kennedy Jr. has said he plans to revolutionize the vaccine court.
Kayla Bartkowski / Staff, Getty Images News

Straight up changing the vaccine court’s structure would probably be the most difficult path. It requires Congress to amend the 1986 law that set it up and President Donald Trump to sign the legislation. Passing the bill to dismantle it requires the same process. Either direction involves all the difficulties of getting a contentious bill through Congress. Even the “friendly amendments” are hard – a 2021 bill to fix the vaccine court was introduced but failed to advance.

However, there are several less direct possibilities.

Adding autism to the injuries list

Kennedy has long supported discredited claims about harms from vaccines, but the vaccine court has been a bulwark against claims that lack mainstream scientific support. For example, the vaccine court held a yearslong court process from 2002 to 2010 and found that autism was not a vaccine injury. The autism trials drew on 50 expert reports, 939 medical articles and 28 experts testifying on the record. The special masters deciding the cases found that none of the causation hypotheses put forward to connect autism and vaccines were reliable as medical or scientific theories.

Much of Kennedy’s ire is directed at the special masters, who he claims “prioritize the solvency” of the system “over their duty to compensate victims.” But the special masters do not work for him. Rather, they are appointed by a majority of the judges in the Court of Federal Claims for four-year terms – and those judges themselves have 15-year terms. Kennedy cannot legally remove any of them in the middle of their service to install new judges who share his views.

Given that, he may seek to put conditions like autism on the list of presumed vaccine injuries, in effect overturning the special masters’ decisions. Revising the list of recognized injuries to add ones without medical evidence is within Kennedy’s powers, but it would still be difficult. It requires a long administrative process with feedback from an advisory committee and the public. Such revisions have historically been controversial, and are usually linked to major scientific reviews of their validity.

Public health and medical groups are already mobilized against Kennedy’s vaccine policy moves. If he failed to follow legally required procedures while adding new injuries to the list, he could be sued to stop the changes.

Targeting vaccine manufacturers

Kennedy could also lean on his newly reconstituted Advisory Committee on Immunization Practices to withdraw recommendations for certain vaccines, which would also remove them from eligibility in the vaccine compensation court. Lawsuits against manufacturers could then go straight to regular courts. On Aug. 14, 2025, the Department of Health and Human Services may have taken a step in this direction by announcing the revival of a childhood vaccine safety task force in response to a lawsuit by anti-vaccine activists.

Kennedy has also supported legislation that would allow claims currently heard in vaccine court to go to regular courts. These drastic reforms could essentially dismantle the vaccine court.

People claiming vaccine injuries could hope to win damages through personal injury lawsuits in the civil justice system instead of vaccine court, perhaps by convincing a jury or getting a settlement. These types of settlements were what prompted the creation of the vaccine court in the first place. But these lawsuits could be hard to win. There is a higher bar for scientific evidence in regular courts than in vaccine court, and plaintiffs would have to sue large corporations rather than file a government claim.

Raising the idea of reforming the vaccine court has provoked strong reactions across the many groups with a stake in the program. It is a complex system with multiple constituents, and Kennedy’s approaches so far pull in different directions. The push to revolutionize it will test the strength of its complex design, but the vaccine court may yet hold up.The Conversation

Anna Kirkland, Professor of Women’s and Gender Studies, University of Michigan

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post RFK Jr.’s plans to overhaul ‘vaccine court’ system would face legal and scientific challenges appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Center-Left

The content presents a fact-based, nuanced analysis of the Vaccine Injury Compensation Program and Robert F. Kennedy Jr.’s criticisms and proposed reforms. It acknowledges the safety and effectiveness of vaccines, aligns with mainstream scientific consensus, and highlights bipartisan efforts for reform. While it critiques Kennedy’s more controversial positions, especially regarding discredited vaccine-autism links, it does so with measured language and provides context on legal and public health complexities. Overall, the article leans slightly left by supporting established science and public health perspectives but remains balanced and informative without strong partisan rhetoric.

Continue Reading

The Conversation

Genomics can help insect farmers avoid pitfalls of domestication

Published

on

theconversation.com – Christine Picard, Professor of Biology, Indiana University – 2025-08-14 07:29:00


Insect farming is gaining popularity for animal feed, pet food, and human consumption, but domestication poses challenges. Lessons from traditional domestication—selective breeding for desirable traits—apply to insects like silkworms and honeybees, which have become dependent on humans. New insect species such as black soldier flies and mealworms offer sustainable protein by recycling organic waste. However, domestication often reduces genetic diversity and immune strength, increasing vulnerability to diseases, as seen in factory-farmed chickens and monoculture crops like bananas. Modern genomics and gene-editing tools can help monitor and maintain genetic health, preventing collapse and supporting sustainable insect agriculture.

A biologist maintains a large population of black soldier flies for protein farming.
picture alliance/Contributer via Getty Images

Christine Picard, Indiana University and Hector Rosche-Flores, Indiana University

Insects are becoming increasingly popular to grow on farms as feed for other animals, pet food and potentially as food for people. The process of bringing a wild animal into an artificial environment, known as domestication, comes with unique challenges. Luckily, there are important lessons to be learned from all the other animals people have domesticated over millennia.

As researchers who study how domesticating animals changes their genes, we believe that recognizing the vulnerabilities that come with domestication is important. Today’s powerful biotechnology tools can help researchers anticipate and head off issues early on.

Domestication is nothing new

From grain domestication starting as far back as 12,000 years ago to today’s high-tech, genome-based breeding strategies, humans have long bent nature to suit their purposes. By selectively breeding individual plants or animals that have desirable traits – be it appearance, size or behavior – humans have domesticated a whole host of species.

The same principle underlies all domestication attempts, from dogs to crops. A breeder identifies an individual with a desired trait – whether that’s a dog’s talent for tracking or a plant’s ability to withstand pests. Then they breed it to confirm that the desired trait can be passed down to offspring. If it works, the breeder can grow lots of descendants in a lineage with the genomic advantage.

People have made crops resilient to disease and environmental challenges, docile cows that yield more milk or meat, large-breasted poultry and cute dogs.

A long history of insects working for people

Insect domestication is also far from new. People have reared silkworms (Bombyx mori) to produce silk for over 5,000 years. But selective breeding and isolation from wild relatives have led to their inability to fly, dependence on one food source and need for assistance to reproduce. As a result, silkworms are wholly reliant on humans for survival, and the original species doesn’t exist anymore.

A white moth sitting on a white cocoon on top of a leaf
Silk moths have lost their ability to fly and are completely dependent on humans for survival.
baobao ou/Moment Open via Getty Images

Similarly, people have maintained colonies of the western honeybee (Apis mellifera) for pollination and honey production for centuries. But bees are at risk due to colony collapse disorder, a phenomenon where worker bees disappear from seemingly healthy hives. The causes of colony collapse disorder are unknown; researchers are investigating disease and pesticides as possible factors.

Now the insect agriculture industry has set its sights on domesticating some other insects as a source of sustainably farmed protein for other animals or people.

Insects such as the black soldier fly (Hermetia illucens) and the mealworm (Tenebrio molitor) can grow on existing organic waste streams. Rearing them on organic farm and food waste circularizes the agricultural system and reduces the environmental footprint of growing proteins.

But these insects will need to be grown at scale. Modern agriculture relies on monocultures of species that allow for uniformity in size and synchronized growth and harvest. Domesticating wild insects will be necessary to turn them into farmed animals.

A large number of white larvae in a dry food medium
Black soldier fly larvae feed on a mixture of wheat bran, corn and alfalfa when reared in labs and farms.
Christine Picard

Domestication has an immunity downside

Chickens today grow faster and bigger than ever. But factory-farmed animals are genetically very homogeneous. Moreover, people take care of everything for these domesticated animals. They have easy access to food and are given antibiotics and vaccines for their health and safety.

Consequently, industrially-farmed chickens have lost a lot of their immune abilities. Building these strong disease-fighting proteins requires a lot of energy. Since their spotless, controlled environments protect them, those immune genes are just not needed. The energy their bodies would typically use to protect themselves can instead be used to grow bigger.

In the wild, individuals with faulty immune genes would likely be killed by pathogens, quickly wiping these bad genes out from the population. But in a domesticated environment, such individuals can survive and pass on potentially terrible genes.

The H5N1 bird flu provides a recent example of what can go wrong when a homogeneous population of domesticated animals encounters a dangerous pathogen. When disease broke out, the poor immune systems of domesticated chickens cracked under the pressure. The disease can spread quickly through large facilities, and eventually all chickens there must be euthanized.

Hundreds of brown chickens with red crowns being reared in an indoor facility
Industrially-farmed chickens are genetically homogenous and have lost much of their immune defenses.
pidjoe/E+ via Getty Images

Domestication and the risks of monoculture

Weak immune systems aren’t the only reason the bird flu spread like it did.

Domestication often involves growing large numbers of a single species in small concentrated areas, referred to as a monoculture. All the individuals in a monoculture are roughly the same, both physically and in their genes, so they all have the same susceptibilities.

Banana cultivars are one example. Banana plants grown in the early 1900s were all descendants of a single clone, named Gros Michel. But when the deadly Panama disease fungus swept through, the plants had no defenses and the cultivar was decimated.

Banana growers turned to the Cavendish variety, grown in the largest banana farms today. The banana industry remains vulnerable to the same kind of risk that took down Gros Michel. A new fungal strain is on the rise, and scientists are rushing to head off a global Cavendish banana collapse.

Lessons about weaknesses that come with domestication are important to the relatively new industry advancing insects as the future of sustainable protein production and organic waste recycling.

How genomics can help correct course

Modern genomics can give insect agriculture a new approach to quality control. Technological tools can help researchers learn how an organism’s genes relate to its physical traits. With this knowledge, scientists can help organisms undergoing domestication bypass potential downsides of the process.

For instance, scientists combined data from hundreds of different domesticated tomato genomes, as well as their wild counterparts. They discovered something you’ve probably experienced – while selecting for longer shelf life, tomato flavor genes were unintentionally bred out.

A similar approach of screening genomes has allowed scientists to discover the combination of genes that enhances milk production in dairy cows. Farmers can intentionally breed individuals with the right combinations of milk-producing genes while keeping an eye on what other genes the animals have or lack. This process ensures that breeders don’t lose valuable traits, such as robust immune systems or high fertility rates, while selecting for economically valuable traits during domestication.

Insect breeders can take advantage of these genetic tools from the outset. Tracking an animal population’s genetic markers is like monitoring patients’ vital signs in the hospital. Insect breeders can look at genes to assess colony health and the need for interventions. With regular genetic monitoring of the farmed population, if they begin to see individuals with markers for some “bad” genes, they can intervene right away, instead of waiting for a disaster.

Mechanisms to remedy an emerging disaster include bringing in a new brood from the wild or another colony whose genes can refresh the domesticated population’s inbred and homogeneous genome. Additionally, researchers could use gene-editing techniques such as CRISPR-Cas9 to replicate healthy and productive combinations of genes in a whole new generation of domesticated insects.

Genomics-assisted breeding is a supplement to standard practices and not a replacement. It can help breeders see which traits are at risk, which ones are evolving, and where natural reservoirs of genetic diversity might be found. It allows breeders to make more informed decisions, identify genetic problems and be proactive rather than reactive.

By harnessing the power of genomics, the insect agriculture industry can avoid setting itself up for an accidental future collapse while continuing to make inroads on sustainable protein production and circularizing the agricultural ecosystem.The Conversation

Christine Picard, Professor of Biology, Indiana University and Hector Rosche-Flores, Ph.D. Student in Biology, Indiana University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Genomics can help insect farmers avoid pitfalls of domestication appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The content presents a factual, science-based discussion on insect domestication and sustainable agricultural practices without promoting a specific political agenda. It focuses on the benefits and risks of domestication and biotechnology, highlighting both challenges and technological solutions in a balanced manner. The article underscores environmental sustainability and advances in genomics while maintaining an objective tone, characteristic of centrist perspectives that weigh multiple facets pragmatically.

Continue Reading

Trending