Connect with us

The Conversation

The US and China may be ending an agreement on science and technology cooperation − a policy expert explains what this means for research

Published

on

The US and China may be ending an agreement on science and technology cooperation − a policy expert explains what this means for research

Caroline Wagner, The Ohio State University

A decades-old science and technology cooperative agreement between the United States and China expires on Aug. 27, 2023. On the surface, an expiring diplomatic agreement may not seem significant. But unless it’s renewed, the quiet end to a cooperative era may have consequences for scientific research and technological innovation.

The possible lapse comes after U.S. Rep. Mike Gallagher, R-Wis., led a congressional group warning the U.S. State Department in July 2023 to beware of cooperation with China. This group recommended to let the agreement expire without renewal, claiming China has gained a military advantage through its scientific and technological ties with the U.S.

The State Department has dragged its feet on renewing the agreement, only requesting an extension at the last moment to “amend and strengthen” the agreement.

The U.S. is an active international research collaborator, and since 2011 China has been its top scientific partner, displacing the United Kingdom, which had been the U.S.‘s most frequent collaborator for decades. China’s domestic research and development spending is closing in on parity with that of the United States. Its scholastic output is growing in both number and quality. According to recent studies, China’s science is becoming increasingly creative, breaking new ground.

As a policy analyst and public affairs professor, I research international collaboration in science and technology and its implications for public policy. Relations between countries are often enhanced by negotiating and signing agreements, and this agreement is no different. The U.S.’s science and technology agreement with China successfully built joint research projects and shared research centers between the two nations.

U.S. scientists can typically work with foreign counterparts without a political agreement. Most aren’t even aware of diplomatic agreements, which are signed long after researchers have worked together. But this is not the case with China, where the 1979 agreement became a prerequisite for and the initiator of cooperation.

A 40-year diplomatic investment

The U.S.-China science and technology agreement was part of a historic opening of relations between the two countries, following decades of antagonism and estrangement. U.S. President Richard Nixon set in motion the process of normalizing relations with China in the early 1970s. President Jimmy Carter continued to seek an improved relationship with China.

China had announced reforms, modernizations and a global opening after an intense period of isolation from the time of the Cultural Revolution from the late 1950s until the early 1970s. Among its “four modernizations” was science and technology, in addition to agriculture, defense and industry.

While China is historically known for inventing gunpowder, paper and the compass, China was not a scientific power in the 1970s. American and Chinese diplomats viewed science as a low-conflict activity, comparable to cultural exchange. They figured starting with a nonthreatening scientific agreement could pave the way for later discussions on more politically sensitive issues.

On July 28, 1979, Carter and Chinese Premier Deng Xiaoping signed an “umbrella agreement” that contained a general statement of intent to cooperate in science and technology, with specifics to be worked out later.

Two men, Jimmy Carter and Deng Xiao Ping, smile and shake hands while standing on a lawn.
Jimmy Carter with Deng Xiaoping in January 1979.
Chuck Fishman/Archive Photos via Getty Images

In the years that followed, China’s economy flourished, as did its scientific output. As China’s economy expanded, so did its investment in domestic research and development. This all boosted China’s ability to collaborate in science – aiding their own economy.

Early collaboration under the 1979 umbrella agreement was mostly symbolic and based upon information exchange, but substantive collaborations grew over time.

A major early achievement came when the two countries published research showing mothers could ingest folic acid to prevent birth defects like spina bifida in developing embryos. Other successful partnerships developed renewable energy, rapid diagnostic tests for the SARS virus and a solar-driven method for producing hydrogen fuel.

A man with glasses and a lab coat looks into a microscope.
Research collaborations between the U.S. and China have led to a variety of innovations, including tests for the SARS virus.
Xinhua News Agency via Getty Images

Joint projects then began to emerge independent of government agreements or aid. Researchers linked up around common interests – this is how nation-to-nation scientific collaboration thrives.

Many of these projects were initiated by Chinese Americans or Chinese nationals working in the United States who cooperated with researchers back home. In the earliest days of the COVID-19 pandemic, these strong ties led to rapid, increased Chinese-U.S. cooperation in response to the crisis.

Time of conflict

Throughout the 2000s and 2010s, scientific collaboration between the two countries increased dramatically – joint research projects expanded, visiting students in science and engineering skyrocketed in number and collaborative publications received more recognition.

As China’s economy and technological success grew, however, U.S. government agencies and Congress began to scrutinize the agreement and its output. Chinese know-how began to build military strength and, with China’s military and political influence growing, they worried about intellectual property theft, trade secret violations and national security vulnerabilities coming from connections with the U.S.

Recent U.S. legislation, such as the CHIPS and Science Act, is a direct response to China’s stunning expansion. Through the CHIPS and Science Act, the U.S. will boost its semiconductor industry, seen as the platform for building future industries, while seeking to limit China’s access to advances in AI and electronics.

The CHIPS and Science Act aims to bolster domestic semiconductor production.

A victim of success?

Some politicians believe this bilateral science and technology agreement, negotiated in the 1970s as the least contentious form of cooperation – and one renewed many times – may now threaten the United States’ dominance in science and technology. As political and military tensions grow, both countries are wary of renewal of the agreement, even as China has signed similar agreements with over 100 nations.

The United States is stuck in a world that no longer exists – one where it dominates science and technology. China now leads the world in research publications recognized as high quality work, and it produces many more engineers than the U.S. By all measures, China’s research spending is soaring.

Even if the recent extension results in a renegotiated agreement, the U.S. has signaled to China a reluctance to cooperate. Since 2018, joint publications have dropped in number. Chinese researchers are less willing to come to the U.S. Meanwhile, Chinese researchers who are in the U.S. are increasingly likely to return home taking valuable knowledge with them.

The U.S. risks being cut off from top know-how as China forges ahead. Perhaps looking at science as a globally shared resource could help both parties craft a truly “win-win” agreement.The Conversation

Caroline Wagner, Professor of Public Affairs, The Ohio State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

2 spacecraft flew exactly in line to imitate a solar eclipse, capture a stunning image and test new tech

Published

on

theconversation.com – Christopher Palma, Teaching Professor of Astronomy & Astrophysics, Penn State – 2025-08-04 07:41:00


During a solar eclipse, astronomers can study the Sun’s faint corona, usually hidden by the bright Sun. The European Space Agency’s Proba-3 mission creates artificial eclipses using two spacecraft flying in precise formation about 492 feet apart. One spacecraft blocks the Sun’s bright disk, casting a shadow on the second, which photographs the corona. Launched in 2024, Proba-3 orbits between 372 miles and 37,282 miles from Earth, maintaining alignment within one millimeter at high speeds. The mission aids future satellite technologies and studies space weather to improve forecasting of solar storms that affect Earth’s satellites.

The solar corona, as viewed by Proba-3’s ASPIICS coronagraph.
ESA/Proba-3/ASPIICS/WOW algorithm, CC BY-SA

Christopher Palma, Penn State

During a solar eclipse, astronomers who study heliophysics are able to study the Sun’s corona – its outer atmosphere – in ways they are unable to do at any other time.

The brightest part of the Sun is so bright that it blocks the faint light from the corona, so it is invisible to most of the instruments astronomers use. The exception is when the Moon blocks the Sun, casting a shadow on the Earth during an eclipse. But as an astronomer, I know eclipses are rare, they last only a few minutes, and they are visible only on narrow paths across the Earth. So, researchers have to work hard to get their equipment to the right place to capture these short, infrequent events.

In their quest to learn more about the Sun, scientists at the European Space Agency have built and launched a new probe designed specifically to create artificial eclipses.

Meet Proba-3

This probe, called Proba-3, works just like a real solar eclipse. One spacecraft, which is roughly circular when viewed from the front, orbits closer to the Sun, and its job is to block the bright parts of the Sun, acting as the Moon would in a real eclipse. It casts a shadow on a second probe that has a camera capable of photographing the resulting artificial eclipse.

An illustration of two spacecraft, one which is spherical and moves in front of the Sun, another that is box-shaped facing the Sun.
The two spacecraft of Proba-3 fly in precise formation about 492 feet (150 meters) apart.
ESA-P. Carril, CC BY-NC-ND

Having two separate spacecraft flying independently but in such a way that one casts a shadow on the other is a challenging task. But future missions depend on scientists figuring out how to make this precision choreography technology work, and so Proba-3 is a test.

This technology is helping to pave the way for future missions that could include satellites that dock with and deorbit dead satellites or powerful telescopes with instruments located far from their main mirrors.

The side benefit is that researchers get to practice by taking important scientific photos of the Sun’s corona, allowing them to learn more about the Sun at the same time.

An immense challenge

The two satellites launched in 2024 and entered orbits that approach Earth as close as 372 miles (600 kilometers) – that’s about 50% farther from Earth than the International Space Station – and reach more than 37,282 miles (60,000 km) at their most distant point, about one-sixth of the way to the Moon.

During this orbit, the satellites move at speeds between 5,400 miles per hour (8,690 kilometers per hour) and 79,200 mph (127,460 kph). At their slowest, they’re still moving fast enough to go from New York City to Philadelphia in one minute.

While flying at that speed, they can control themselves automatically, without a human guiding them, and fly 492 feet (150 meters) apart – a separation that is longer than the length of a typical football stadium – while still keeping their locations aligned to about one millimeter.

They needed to maintain that precise flying pattern for hours in order to take a picture of the Sun’s corona, and they did it in June 2025.

The Proba-3 mission is also studying space weather by observing high-energy particles that the Sun ejects out into space, sometimes in the direction of the Earth. Space weather causes the aurora, also known as the northern lights, on Earth.

While the aurora is beautiful, solar storms can also harm Earth-orbiting satellites. The hope is that Proba-3 will help scientists continue learning about the Sun and better predict dangerous space weather events in time to protect sensitive satellites.The Conversation

Christopher Palma, Teaching Professor of Astronomy & Astrophysics, Penn State

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post 2 spacecraft flew exactly in line to imitate a solar eclipse, capture a stunning image and test new tech appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The content is a factual and scientific discussion of the Proba-3 space mission and its efforts to study the Sun’s corona through artificial eclipses. It emphasizes technological achievement and scientific advancement without promoting any political ideology or taking a stance on politically charged issues. The tone is neutral, informative, and focused on space exploration and research, which aligns with a centrist, nonpartisan perspective.

Continue Reading

The Conversation

Are you really allergic to penicillin? A pharmacist explains why there’s a good chance you’re not − and how you can find out for sure

Published

on

theconversation.com – Elizabeth W. Covington, Associate Clinical Professor of Pharmacy, Auburn University – 2025-07-31 07:35:00


About 10–20% of Americans report a penicillin allergy, but fewer than 1% actually are allergic. Many people are labeled allergic due to childhood rashes or mild side effects, which are often unrelated to true allergies. Penicillin, discovered in 1928, is a narrow-spectrum antibiotic used to treat many infections safely and effectively. Incorrect allergy labels lead to use of broader, costlier antibiotics that promote resistance and may cause more side effects. Allergy status can be evaluated through detailed medical history and penicillin skin testing or monitored test dosing, allowing many to safely use penicillin again.

Penicillin is a substance produced by penicillium mold. About 80% of people with a penicillin allergy will lose the allergy after about 10 years.
Clouds Hill Imaging Ltd./Corbis Documentary via Getty Images

Elizabeth W. Covington, Auburn University

Imagine this: You’re at your doctor’s office with a sore throat. The nurse asks, “Any allergies?” And without hesitation you reply, “Penicillin.” It’s something you’ve said for years – maybe since childhood, maybe because a parent told you so. The nurse nods, makes a note and moves on.

But here’s the kicker: There’s a good chance you’re not actually allergic to penicillin. About 10% to 20% of Americans report that they have a penicillin allergy, yet fewer than 1% actually do.

I’m a clinical associate professor of pharmacy specializing in infectious disease. I study antibiotics and drug allergies, including ways to determine whether people have penicillin allergies.

I know from my research that incorrectly being labeled as allergic to penicillin can prevent you from getting the most appropriate, safest treatment for an infection. It can also put you at an increased risk of antimicrobial resistance, which is when an antibiotic no longer works against bacteria.

The good news? It’s gotten a lot easier in recent years to pin down the truth of the matter. More and more clinicians now recognize that many penicillin allergy labels are incorrect – and there are safe, simple ways to find out your actual allergy status.

A steadfast lifesaver

Penicillin, the first antibiotic drug, was discovered in 1928 when a physician named Alexander Fleming extracted it from a type of mold called penicillium. It became widely used to treat infections in the 1940s. Penicillin and closely related antibiotics such as amoxicillin and amoxicillin/clavulanate, which goes by the brand name Augmentin, are frequently prescribed to treat common infections such as ear infections, strep throat, urinary tract infections, pneumonia and dental infections.

Penicillin antibiotics are a class of narrow-spectrum antibiotics, which means they target specific types of bacteria. People who report having a penicillin allergy are more likely to receive broad-spectrum antibiotics. Broad-spectrum antibiotics kill many types of bacteria, including helpful ones, making it easier for resistant bacteria to survive and spread. This overuse speeds up the development of antibiotic resistance. Broad-spectrum antibiotics can also be less effective and are often costlier.

Figuring out whether you’re really allergic to penicillin is easier than it used to be.

Why the mismatch?

People often get labeled as allergic to antibiotics as children when they have a reaction such as a rash after taking one. But skin rashes frequently occur alongside infections in childhood, with many viruses and infections actually causing rashes. If a child is taking an antibiotic at the time, they may be labeled as allergic even though the rash may have been caused by the illness itself.

Some side effects such as nausea, diarrhea or headaches can happen with antibiotics, but they don’t always mean you are allergic. These common reactions usually go away on their own or can be managed. A doctor or pharmacist can talk to you about ways to reduce these side effects.

People also often assume penicillin allergies run in families, but having a relative with an allergy doesn’t mean you’re allergic – it’s not hereditary.

Finally, about 80% of patients with a true penicillin allergy will lose the allergy after about 10 years. That means even if you used to be allergic to this antibiotic, you might not be anymore, depending on the timing of your reaction.

Why does it matter if I have a penicillin allergy?

Believing you’re allergic to penicillin when you’re not can negatively affect your health. For one thing, you are more likely to receive stronger, broad-spectrum antibiotics that aren’t always the best fit and can have more side effects. You may also be more likely to get an infection after surgery and to spend longer in the hospital when hospitalized for an infection. What’s more, your medical bills could end up higher due to using more expensive drugs.

Penicillin and its close cousins are often the best tools doctors have to treat many infections. If you’re not truly allergic, figuring that out can open the door to safer, more effective and more affordable treatment options.

An arm stretched out on an examining table gets pricked with a white needle by the hands of a clinician administering an allergy test.
A penicillin skin test can safely determine whether you have a penicillin allergy, but a health care professional may also be able to tell by asking you some specific questions.
BSIP/Collection Mix: Subjects via Getty Images

How can I tell if I am really allergic to penicillin?

Start by talking to a health care professional such as a doctor or pharmacist. Allergy symptoms can range from a mild, self-limiting rash to severe facial swelling and trouble breathing. A health care professional may ask you several questions about your allergies, such as what happened, how soon after starting the antibiotic did the reaction occur, whether treatment was needed, and whether you’ve taken similar medications since then.

These questions can help distinguish between a true allergy and a nonallergic reaction. In many cases, this interview is enough to determine you aren’t allergic. But sometimes, further testing may be recommended.

One way to find out whether you’re really allergic to penicillin is through penicillin skin testing, which includes tiny skin pricks and small injections under the skin. These tests use components related to penicillin to safely check for a true allergy. If skin testing doesn’t cause a reaction, the next step is usually to take a small dose of amoxicillin while being monitored at your doctor’s office, just to be sure it’s safe.

A study published in 2023 showed that in many cases, skipping the skin test and going straight to the small test dose can also be a safe way to check for a true allergy. In this method, patients take a low dose of amoxicillin and are observed for about 30 minutes to see whether any reaction occurs.

With the right questions, testing and expertise, many people can safely reclaim penicillin as an option for treating common infections.The Conversation

Elizabeth W. Covington, Associate Clinical Professor of Pharmacy, Auburn University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Are you really allergic to penicillin? A pharmacist explains why there’s a good chance you’re not − and how you can find out for sure appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

This content is educational and focused on medical information, specifically on penicillin allergies and their impact on health care. It presents scientific research and clinical practices without promoting any political ideology or partisan perspective. The article emphasizes evidence-based medical facts and encourages discussion with health care professionals, maintaining a neutral and informative tone typical of centrist communication.

Continue Reading

The Conversation

Do you really need to read to learn? What neuroscience says about reading versus listening

Published

on

theconversation.com – Stephanie N. Del Tufo, Assistant Professor of Education & Human Development, University of Delaware – 2025-07-28 07:34:00


Reading and listening engage the brain differently. Reading allows control over pace, helps recognize letters, sounds, and meanings, and uses visual cues like punctuation to aid understanding. Listening requires memory to retain fleeting spoken words, quickly identifying sounds amid continuous speech, and attention to tone and context. Listening can be harder than reading, especially with complex material, while reading enables easier review and note-taking. For some, like people with dyslexia, listening may be easier. Engagement matters: multitasking during listening can reduce comprehension. Both reading and listening offer unique benefits and are complementary rather than interchangeable for learning.

Reading and listening are two different brain functions. Do we need to do both?
Goads Agency/E+ via Getty Images

Stephanie N. Del Tufo, University of Delaware

Curious Kids is a series for children of all ages. If you have a question you’d like an expert to answer, send it to CuriousKidsUS@theconversation.com.


“Do we need to read, or can we just get everything through audio, like podcasts and audiobooks?” – Sebastian L., 15, Skanderborg, Denmark


Let’s start with a thought experiment: Close your eyes and imagine what the future might look like in a few hundred years.

Are people intergalactic travelers zooming between galaxies? Maybe we live on spaceships, underwater worlds or planets with purple skies.

Now, picture your bedroom as a teenager of the future. There’s probably a glowing screen on the wall. And when you look out the window, maybe you see Saturn’s rings, Neptune’s blue glow or the wonders of the ocean floor.

Now ask yourself: Is there a book in the room?

Open your eyes. Chances are, there’s a book nearby. Maybe it’s on your nightstand or shoved under your bed. Some people have only one; others have many.

You’ll still find books today, even in a world filled with podcasts. Why is that? If we can listen to almost anything, why does reading still matter?

As a language scientist, I study how biological factors and social experiences shape language. My work explores how the brain processes spoken and written language, using tools like MRI and EEG.

Whether reading a book or listening to a recording, the goal is the same: understanding. But these activities aren’t exactly alike. Each supports comprehension in different ways. Listening doesn’t provide all the benefits of reading, and reading doesn’t offer everything listening does. Both are important, but they are not interchangeable.

A brain scan showing various colors in different parts of the brain
My colleagues and I use brain scans like this MRI to study what the brain is doing when a person reads.
Rajaaisya/Science Photo Library via Getty Images

Different brain processes

Your brain uses some of the same language and cognitive systems for both reading and listening, but it also performs different functions depending on how you’re taking in the information.

When you read, your brain is working hard behind the scenes. It recognizes the shapes of letters, matches them to speech sounds, connects those sounds to meaning, then links those meanings across words, sentences and even whole books. The text uses visual structure such as punctuation marks, paragraph breaks or bolded words to guide understanding. You can go at your own speed.

Listening, on the other hand, requires your brain to work at the pace of the speaker. Because spoken language is fleeting, listeners must rely on cognitive processes, including memory to hold onto what they just heard.

Speech is also a continuous stream, not neatly separated words. When someone speaks, the sounds blend together in a process called coarticulation. This requires the listener’s brain to quickly identify word boundaries and connect sounds to meanings. Beyond identifying the words themselves, the listener’s brain must also pay attention to tone, speaker identity and context to understand the speaker’s meaning.

‘Easier’ is relative – and contextual

Many people assume that listening is easier than reading, but this is not usually the case. Research shows that listening can be harder than reading, especially when the material is complex or unfamiliar.

Listening and reading comprehension are more similar for simple narratives, like fictional stories, than for nonfiction books or essays that explain facts, ideas or how things work. My research shows that genre affects how you read. In fact, different kinds of texts rely on specialized brain networks. Fictional stories engage regions of the brain involved in social understanding and storytelling. Nonfiction texts, on the other hand, rely on a brain network that helps with strategic thinking and goal-directed attention.

Reading difficult material tends to be easier than listening from a practical standpoint, as well. Reading lets you move around within the text easily, rereading particular sections if you’re struggling to understand, or underlining important points to revisit later. A listener who is having trouble following a particular point must pause and rewind, which is less precise than scanning a page and can interrupt the flow of listening, impeding understanding.

Even so, for some people, like those with developmental dyslexia, listening may be easier. Individuals with developmental dyslexia often struggle to apply their knowledge of written language to correctly pronounce written words, a process known as decoding. Listening allows the brain to extract meaning without the difficult process of decoding.

Engaging with the material

One last thing to consider is engagement. In this context, engagement refers to being mentally present, actively focusing, processing information and connecting ideas to what you already know.

People often listen while doing other things, like exercising, cooking or browsing the internet – activities that would be hard to do while reading. When researchers asked college students to either read or listen to a podcast on their own time, students who read the material performed significantly better on a quiz than those who listened. Many of the students who listened reported multitasking, such as clicking around on their computers while the podcast played. This is particularly important, as paying attention appears to be more important for listening comprehension than reading comprehension.

So, yes, reading still matters, even when listening is an option. Each activity offers something different, and they are not interchangeable.

The best way to learn is not by treating books and audio recordings as the same, but by knowing how each works and using both to better understand the world.


Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to CuriousKidsUS@theconversation.com. Please tell us your name, age and the city where you live.

And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.The Conversation

Stephanie N. Del Tufo, Assistant Professor of Education & Human Development, University of Delaware

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Do you really need to read to learn? What neuroscience says about reading versus listening appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

This article presents a neutral and factual exploration of the cognitive differences between reading and listening without advocating for any political ideology. It focuses on scientific research and educational perspectives, using measured language and citing studies to explain how both methods of information intake engage the brain differently. The tone is informative and balanced, aimed at a general audience, including children, without promoting any partisan viewpoints or ideological framing. Overall, it adheres to objective reporting grounded in neuroscience and education.

Continue Reading

Trending