fbpx
Connect with us

The Conversation

The tools in a medieval Japanese healer’s toolkit: from fortunetelling and exorcism to herbal medicines

Published

on

The tools in a medieval Japanese healer's toolkit: from fortunetelling and exorcism to herbal medicines

An ‘onmyoji,' an expert on yin and yang, performs divination with counting rods in an Edo-period illustration.
Kyoto University Library/Wikimedia

Alessandro Poletto, Arts & Sciences at Washington University in St. Louis

“The Tale of Genji,” often called Japan's first novel, was written 1,000 years ago. Yet it still occupies a powerful place in the Japanese imagination. A popular TV drama, “Dear Radiance” – “Hikaru kimi e” – is based on the life of its author, Murasaki Shikibu: the lady-in-waiting whose experiences at court inspired the refined world of “Genji.”

Romantic relationships, poetry and political intrigue most of the novel's action. Yet illness plays an important role in several crucial moments, most famously when one of the main character's lovers, Yūgao, falls ill and passes away, killed by what appears to be a powerful spirit – as later happens to his wife, Aoi, as well.

Someone reading “The Tale of Genji” at the time it was written would have found this realistic – as would some people in different cultures around the world . from early medieval Japan document numerous descriptions of spirit possession, usually blamed on spirits of the dead. As has been true in many times and places, physical and spiritual were seen as intertwined.

As a historian of premodern Japan, I've studied the processes its healing experts used to deal with possessions, and illness generally. Both literature and historical records demonstrate that the boundaries between what are often called “religion” and “medicine” were indistinct, if they existed at all.

Advertisement
An intricate illustration of a ceremony attended by people in robes, with the background covered in a golden color.
A 17th-century scroll, ‘Maboroshi no Genji monogatari emaki,' showing the funeral of Genji's wife, Aoi.
Heritage Art/Heritage Images via Getty Images

Vanquishing spirits

The government department in charge of divination, the of Yin and Yang, established in the late seventh century, played a crucial role. Its technicians, known as onmyōji – yin and yang masters – were in charge of divination and fortunetelling. They were also responsible for observing the skies, interpreting omens, calendrical calculations, timekeeping and eventually a variety of rituals.

Today, onmyōji appear as wizardlike figures in novels, manga, anime and video games. Though heavily fictionalized, there is a historical kernel of truth in these fantastical depictions.

Starting from around the 10th century, Onmyōji were charged with carrying out iatromancy: divining the cause of a disease. Generally, they distinguished between disease caused by external or internal factors, though boundaries between the categories were often blurred. External factors could include local deities known as “kami,” other kami-like entities the patient had upset, minor Buddhist deities or malicious spirits – often revengeful ghosts.

In the case of spirit-induced illness, Buddhist monks would work to winnow out the culprit. Monks who specialized in exorcistic practices were known as “genja” and were believed to know how to expel the spirit from a patient's body through powerful incantations. Genja would then transfer it onto another person and force the spirit to reveal its identity before vanquishing it.

A faded picture of a broom, branch with a few leaves, and a fan, as well as Japanese script on top of it.
A 19th century print by Kubo Shunman shows objects representing the New Year's ceremony of exorcising demons.
Heritage Images/Hulton Archive via Getty Images

Court physicians

While less common than spirit possessions, the idea that physical factors could also cause illness appears in sources from this period.

Since the late seventh century, the government of the Japanese archipelago had established a bureau in charge of the well-being of aristocratic families and high-ranking members of the bureaucracy. This Bureau of Medications, the Ten'yakuryō, was based on similar in China's Tang dynasty, which Japanese officials adapted for their own culture.

Advertisement

The bureau's members, whom scholars today often call “court physicians” in English, created medicinal concoctions. But the bureau also included technicians tasked with using spells, perhaps to protect high-ranking people from maladies.

Not either/or

Some scholars, both Japanese and non-Japanese, compare the practices of members of the Bureau of Medications with what is now called “traditional Chinese medicine,” or just “medicine.” They typically consider the onmyōji and Buddhist monks, meanwhile, to fall under the label of “religion” – or perhaps, in the case of onmyōji, “magic.”

But I have found numerous signs that these categories do not people today make sense of early medieval Japan.

Starting in the seventh century, as a centralized Japanese state began to take shape, Buddhist monks from the Korean Peninsula and present-day China brought healing practices to Japan. These techniques, such as herbalism – treatments made of plants – later became associated with court physicians. At the same time, though, monks also employed healing practices rooted in Buddhist rituals. Clearly, the distinction between ritual and physical healing was not part of their mindset.

Advertisement

Similarly, with court physicians, it is true that sources from this period mostly show them practicing herbalism. Later on, they incorporated simple needle surgeries and moxibustion, which involves burning a substance derived from dried leaves from the mugwort plant near the patient's skin.

A drawing showing the outline of the human body from behind and in front, with one arm outstretched, and Chinese characters written on it.
An 18th-century engraving identifying parts of the body treated by moxibustion.
Science & Society Picture Library via Getty Images

However, they also incorporated ritual elements from various Chinese traditions: spells, divination, fortunetelling and hemerology, the practice of identifying auspicious and inauspicious days for specific . For example, moxibustion was supposed to be avoided on certain days because of the position of a deity, known as “jinshin,” believed to reside and move inside the human body. Practicing moxibustion on the body part where “jinshin” resided in a specific moment could kill it, therefore potentially harming the patient.

Court physicians were also expected to ritually “rent” a place for a pregnant woman to deliver, producing talismans written in red ink that were meant to function as “leases” for the birthing area. This was done in order to keep away deities who might otherwise enter that , possibly because childbirth was believed to be a source of defilement. They also used hemerology to determine where the birthing bed should be placed.

In short, these healing experts straddled the boundaries between what are often called “religion” and “medicine.” We take for granted the categories that shape our understanding of the world around us, but they are the result of complex historical processes – and look different in every time and place.

Reading works like “The Tale of Genji” is not only a way to immerse ourselves in the world of a medieval court, one where spirits roam freely, but a chance to see other ways of sorting human experience at work.The Conversation

Alessandro Poletto, Lecturer in East Asian Religions, Arts & Sciences at Washington University in St. Louis

Advertisement

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

Vaccines tell a success story that Robert F. Kennedy Jr. and Trump forget – here are some key reminders

Published

on

theconversation.com – Mark R. O'Brian, Professor and Chair of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, at Buffalo – 2024-07-26 07:11:29
Many fatal childhood illnesses can be prevented with vaccination.
Halfpoint Images/Moment via Getty Images

Mark R. O'Brian, University at Buffalo

Vaccinations have provided significant protection for the public against infectious diseases. However, there was a modest decrease in support in 2023 nationwide for vaccine requirements for children to attend public schools.

In addition, the presidential candidacy of Robert F. Kennedy Jr., a leading critic of childhood vaccination, has given him a prominent platform in which to amplify his views. This includes an extensive interview on the “Joe Rogan Experience,” a with over 14 million subscribers. Notably, former has said he is opposed to mandatory school COVID-19 vaccinations, and in a phone call Trump apparently wasn't aware was being recorded, he appeared to endorse Kennedy's views toward vaccines.

I am a biochemist and molecular biologist studying the roles microbes play in health and disease. I also teach medical students and am interested in how the public understands science.

Advertisement

Here are some facts about vaccines that skeptics like Kennedy get wrong:

Vaccines are effective and safe

Public health data from 1974 to the present conclude that vaccines have saved at least 154 million lives worldwide over the past 50 years. Vaccines are also constantly monitored for safety in the U.S.

Nevertheless, the false claim that vaccines cause autism persists despite study after study of large populations throughout the world showing no causal link between them.

Claims about the dangers of vaccines often come from misrepresenting scientific research papers. Kennedy cites a 2005 report allegedly showing massive brain inflammation in monkeys in response to vaccination, when in fact the authors of that study that there were no serious medical complications. A separate 2003 study that Kennedy claimed showed a 1,135% increase in autism in vaccinated versus unvaccinated children actually found no consistent significant association between vaccines and neurodevelopmental outcomes.

Advertisement

Kennedy also claims that a 2002 vaccine study included a control group of children 6 months of age and younger who were fed mercury-contaminated tuna sandwiches. This claim is false.

Gloved hands of clinician placing bandaid on child's arm, a syringe and vaccine vial beside them
Vaccines are continuously monitored for safety before and long after they're available to the general public.
Elena Zaretskaya/Moment via Getty Images

Aluminum adjuvants help boost immunity

Kennedy is co-counsel with a law firm that is suing the pharmaceutical company Merck based in part on the unfounded assertion that the aluminum in one of its vaccines causes neurological disease. Aluminum is added to many vaccines as an adjuvant to strengthen the body's immune response to the vaccine, thereby enhancing the body's defense against the targeted microbe.

The law firm's claim is based on a 2020 report showing that brain tissue from some with Alzheimer's disease, autism and multiple sclerosis have elevated levels of aluminum. The authors of that study do not assert that vaccines are the source of the aluminum, and vaccines are unlikely to be the culprit.

Notably, the brain samples analyzed in that study were from 47- to 105-year-old patients. Most people are exposed to aluminum primarily through their diets, and aluminum is eliminated from the body within days. Therefore, aluminum exposure from childhood vaccines is not expected to persist in those patients.

Vaccines undergo the same approval process as other drugs

Clinical trials for vaccines and other drugs are blinded, randomized and placebo-controlled studies. For a vaccine trial, this means that participants are randomly divided into one group that receives the vaccine and a second group that receives a placebo saline solution. The researchers carrying out the study, and sometimes the participants, do not know who has received the vaccine or the placebo until the study has finished. This eliminates bias.

Advertisement

Results are published in the public domain. For example, vaccine trial data for COVID-19, human papilloma virus and rotavirus is available for anyone to access.

Vaccine manufacturers are liable for injury or death

Kennedy's against Merck contradicts his insistence that vaccine manufacturers are fully immune from litigation.

His claim is based on an incorrect interpretation of the National Vaccine Injury Compensation Program, or VICP. VICP is a no-fault federal program created to reduce frivolous lawsuits against vaccine manufacturers, which threaten to cause vaccine shortages and a resurgence of vaccine-preventable disease.

A person injury from a vaccine can petition the U.S. Court of Federal Claims through the VICP for monetary compensation. If the VICP petition is denied, the claimant can then sue the vaccine manufacturer.

Advertisement
Gloved hand picking up vaccine vial among a tray of vaccine vials
Drug manufacturers are liable for any vaccine-related or injury.
Andreas Ren Photography Germany/Image Source via Getty Images

The majority of cases resolved under the VICP end in a negotiated settlement between parties without establishing that a vaccine was the cause of the claimed injury. Kennedy and his law firm have incorrectly used the payouts under the VICP to assert that vaccines are unsafe.

The VICP gets the vaccine manufacturer off the hook only if it has complied with all requirements of the Federal Food, Drug and Cosmetic Act and exercised due care. It does not protect the vaccine maker from claims of fraud or withholding information regarding the safety or efficacy of the vaccine during its development or after approval.

Good nutrition and sanitation are not substitutes for vaccination

Kennedy asserts that populations with adequate nutrition do not need vaccines to avoid infectious diseases. While it is clear that improvements in nutrition, sanitation, water treatment, food safety and public health measures have played important roles in reducing deaths and severe complications from infectious diseases, these factors do not eliminate the need for vaccines.

After World War II, the U.S. was a wealthy nation with substantial health-related infrastructure. Yet, Americans reported an average of 1 million cases per year of now-preventable infectious diseases.

Vaccines introduced or expanded in the 1950s and 1960s against diseases like diphtheria, pertussis, tetanus, measles, polio, mumps, rubella and Haemophilus influenza type B have resulted in the near or complete eradication of those diseases.

Advertisement

It's easy to forget why many infectious diseases are rarely encountered today. The of vaccines does not always tell its own story. It must be retold again and again to counter misinformation.The Conversation

Mark R. O'Brian, Professor and Chair of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Vaccines tell a success story that Robert F. Kennedy Jr. and Trump forget – here are some key reminders appeared first on .com

Advertisement
Continue Reading

The Conversation

Tagging seals with sensors helps scientists track ocean currents and a changing climate

Published

on

theconversation.com – Lilian (Lily) Dove, Postdoctoral Fellow of Oceanography, Brown – 2024-07-25 07:08:14

Tagging seals with sensors helps scientists track ocean currents and a changing climate

Lilian Dove, Brown University

A surprising technique has helped scientists observe how Earth's oceans are changing, and it's not using specialized robots or artificial intelligence. It's tagging seals.

Several species of seals around and on Antarctica and regularly dive more than 100 meters in search of their next meal. These seals are experts at swimming through the vigorous ocean currents that make up the Southern Ocean. Their tolerance for deep waters and ability to navigate rough currents make these adventurous creatures the perfect research assistants to help oceanographers like my colleagues and me study the Southern Ocean.

Advertisement

Seal sensors

Researchers have been attaching tags to the foreheads of seals for the past two decades to collect data in remote and inaccessible regions. A researcher tags the seal during mating season, when the marine mammal to shore to rest, and the tag remains attached to the seal for a year.

A researcher glues the tag to the seal's head – tagging seals does not affect their behavior. The tag detaches after the seal molts and sheds its fur for a new coat each year.

The tag collects data while the seal dives and transmits its location and the scientific data back to researchers via satellite when the seal surfaces for .

First proposed in 2003, seal tagging has grown into an international collaboration with rigorous sensor accuracy standards and broad data sharing. Advances in satellite technology now allow scientists to have near-instant access to the data collected by a seal.

Advertisement

New scientific discoveries aided by seals

The tags attached to seals typically carry pressure, temperature and salinity sensors, all properties used to assess the ocean's rising temperatures and changing currents. The sensors also often contain chlorophyll fluorometers, which can data about the 's phytoplankton concentration.

Phytoplankton are tiny organisms that form the base of the oceanic food web. Their presence often means that animals such as fish and seals are around.

The seal sensors can also tell researchers about the effects of climate change around Antarctica. Approximately 150 tons of ice melts from Antarctica every year, contributing to global sea-level rise. This melting is driven by warm water carried to the ice shelves by oceanic currents.

With the data collected by seals, oceanographers have described some of the physical pathways this warm water travels to reach ice shelves and how currents transport the resulting melted ice away from glaciers.

Advertisement

Seals regularly dive under sea ice and near glacier ice shelves. These regions are challenging, and can even be dangerous, to sample with traditional oceanographic methods.

Across the open Southern Ocean, away from the Antarctic coast, seal data has also shed light on another pathway causing ocean warming. Excess heat from the atmosphere moves from the ocean surface, which is in contact with the atmosphere, down to the interior ocean in highly localized regions. In these , heat moves into the deep ocean, where it can't be dissipated out through the atmosphere.

The ocean stores most of the heat energy put into the atmosphere from human activity. So, understanding how this heat moves around helps researchers monitor oceans around the globe.

Seal behavior shaped by ocean physics

The seal data also provides marine biologists with information about the seals themselves. Scientists can determine where seals look for food. Some regions, called fronts, are hot spots for elephant seals to hunt for food.

Advertisement

In fronts, the ocean's circulation creates turbulence and mixes water in a way that brings nutrients up to the ocean's surface, where phytoplankton can use them. As a result, fronts can have phytoplankton blooms, which attract fish and seals.

Scientists use the tag data to see how seals are adapting to a changing climate and warming ocean. In the short term, seals may benefit from more ice melt around the Antarctic continent, as they tend to find more food in coastal areas with holes in the ice. Rising subsurface ocean temperatures, however, may change where their prey is and ultimately threaten seals' ability to thrive.

Seals have helped scientists understand and observe some of the most remote regions on Earth. On a changing planet, seal tag data will continue to provide observations of their ocean , which has vital implications for the rest of Earth's climate system.The Conversation

Lilian Dove, Postdoctoral Fellow of Oceanography, Brown University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Read More

The post Tagging seals with sensors helps scientists track ocean currents and a changing climate appeared first on .com

Continue Reading

The Conversation

Cheesemaking is a complex science – a food chemist explains the process from milk to mozzarella

Published

on

theconversation.com – John A. Lucey, Professor of Food Science, of Wisconsin- – 2024-07-24 07:18:57
Storing cheese wheels to let them age intensifies the flavor.
AP Photo/Antonio Calanni

John A. Lucey, University of Wisconsin-Madison

Cheese is a relatively simple food. It's made with milk, enzymes – these are proteins that can chop up other proteins – bacterial cultures and salt. Lots of complex chemistry goes into the cheesemaking process, which can determine whether the cheese turns out soft and gooey like mozzarella or hard and fragrant like Parmesan.

In fact, humans have been making cheese for about 10,000 years. Roman soldiers were given cheese as part of their rations. It is a nutritious food that provides protein, calcium and other minerals. Its long shelf allows it to be transported, traded and shipped long distances.

I am a food scientist at the University of Wisconsin who has studied cheese chemistry for the past 35 years.

Advertisement

In the U.S., cheese is predominantly made with cow's milk. But you can also find cheese made with milk from other animals like sheep, goats and even buffalo and yak.

Unlike with yogurt, another fermented dairy product, cheesemakers remove whey – which is water – to make cheese. Milk is about 90% water, whereas a cheese like cheddar is less than about 38% water.

Removing water from milk to make cheese results in a harder, firmer product with a longer shelf life, since milk is very perishable and spoils quickly. Before the invention of refrigeration, milk would quickly sour. Making cheese was a way to preserve the nutrients in milk so you could eat it weeks or months in the future.

How is cheese made?

All cheesemakers first pump milk into a cheese vat and add a special enzyme called rennet. This enzyme destabilizes the proteins in the milk – the proteins then aggregate together and make a gel. The cheesemaker is essentially turning milk from a liquid into a gel.

Advertisement

After anywhere from 10 minutes to an hour, depending on the type of cheese, the cheesemaker cuts this gel, typically into cubes. Cutting the gel helps some of the whey, or water, separate from the cheese curd, which is made of aggregated milk and looks like a yogurt gel. Cutting the gel into cubes lets some water escape from the newly cut surfaces through small pores, or openings, in the gel.

The cheesemaker's goal is to remove as much whey and moisture from the curd as they need to for their specific recipe. To do so, the cheesemaker might stir or heat up the curd, which helps release whey and moisture. Depending on the type of cheese made, the cheesemaker will drain the whey and water from the vat, leaving behind the cheese curds.

A man in a white lab coat, hairnet and gloves pulls a device through a large tub of white liquid.
Wisconsin Master Cheesemaker Gary Grossen cuts a vat of cheese with a cheese harp during a cheesemaking short course at the Center for Dairy Research in Madison, Wis. Cutting helps release whey during the cheesemaking .
UW Center for Dairy Research

For a harder cheese like cheddar, the cheesemaker adds salt directly to the curds while they're still in the vat. Salting the curds expels more whey and moisture. The cheesemaker then packs the curds together in forms or hoops – these are containers that shape the curds into a block or wheel and hold them there – and places them under pressure. The pressure squeezes the curds in these hoops, and they knit together to form a solid block of cheese.

Cheesemakers salt other cheeses, like mozzarella, by placing them in a salt solution called a brine. The cheese block or wheel floats in a brine tank for hours, days or even weeks. During that time, the cheese absorbs some of the salt, which adds flavor and protects against unwanted bacterial or pathogen growth.

A graphic showing the many steps between a farmer harvesting milk from cows and the cheese reaching the consumer.
The cheese production process.
UW Center for Dairy Research

Cheese is a living, fermented food

While the cheesemaker is completing all these steps, several important bacterial processes are occurring. The cheesemaker adds cheese cultures, which are bacteria they choose that produce specific flavors, at the beginning of the process. Adding them to the milk while it is still liquid gives the bacteria time to ferment the lactose in the milk.

Historically, cheesemakers used raw milk, and the bacteria in the raw milk soured the cheese. Now, cheesemakers use pasteurization, a mild heat treatment that destroys any pathogens present in the raw milk. But using this treatment means the cheesemakers need to add back in some bacteria called starters – these “start” the fermentation process.

Advertisement

Pasteurization provides a more controlled process for the cheesemaker, as they can select specific bacteria to add, rather than whatever is present in the raw milk.
Essentially, these bacteria eat (ferment) the sugar – the lactose – and in doing so produce lactic acid, as well as other desirable flavor compounds in the cheese like diacetyl, which smells like hot buttered popcorn.

In some types of cheese, these cultures stay active in the cheese long after it leaves the cheese vat. Many cheesemakers age their cheeses for weeks, months or even years to give the fermentation process more time to develop the desired flavors. Aged cheeses include Parmesan, aged cheddars and Gouda.

A person in a white coat holds a wheel of cheese.
A Wisconsin cheesemaker inspects a wheel of Parmesan in the aging room. Aging is an important step in the production of many cheeses, as it allows for flavor .
The Dairy Farmers of Wisconsin

In essence, cheesemaking is a milk concentration process. Cheesemakers want their final product to have the milk proteins, fat and nutrients, without as much of the water. For example, the main milk protein that is captured in the cheesemaking process is casein. Milk might contain about 2.5% casein content, but a finished cheese like cheddar may contain about 25% casein (protein). So cheese contains lots of nutrients protein, calcium and fat.

Infinite possibilities with cheese

There are hundreds of different varieties of cow's milk cheese made across the globe, and they all start with milk. All of these different varieties are produced by adjusting the cheesemaking process.

For some cheeses, like Limburger, the cheesemaker rubs a smear – a solution containing various types of bacteria – on the cheese's surface during the aging process. For others, like Camembert, the cheesemaker places the cheese in an (e.g., a cave) that encourages mold growth.

Advertisement

Others like bandaged cheddar are wrapped with bandages or covered with ash. Adding a bandage or ash onto the cheese's surface helps protect it from excessive mold growth, and it reduces the amount of moisture lost to evaporation. This creates a harder cheese with stronger flavors.

A man in a white apron and hat stands in a room full of shelves stacked with cheese.
Wisconsin Master Cheesemaker Joe Widmer in his brick cheese aging room. Brick cheese is a smear-ripened cheese – it is produced by applying a salt solution to the exterior of the cheese as it ages.
Dairy Farmers of Wisconsin

Over the past 60 years, cheesemakers have figured out how to select the right bacterial cultures to make cheese with specific flavors and textures. The possibilities are endless, and there's no limit to the cheesemaker's imagination.The Conversation

John A. Lucey, Professor of Food Science, University of Wisconsin-Madison

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

Advertisement

The post Cheesemaking is a complex science – a food chemist explains the process from milk to mozzarella appeared first on .com

Continue Reading

Trending