fbpx
Connect with us

The Conversation

Saturn’s ocean moon Enceladus is able to support life − my research team is working out how to detect extraterrestrial cells there

Published

on

theconversation.com – Fabian Klenner, Postdoctoral Scholar in Earth and Sciences, of Washington – 2024-04-17 07:19:07
Scientists could one day find traces of on Enceladus, an ocean-covered moon orbiting Saturn.
NASA/JPL-Caltech, CC BY-SA

Fabian Klenner, University of Washington

Saturn has 146 confirmed moons – more than any other planet in the solar system – but one called Enceladus stands out. It appears to have the ingredients for life.

From 2004 to 2017, Cassini – a joint mission between NASA, the European Space Agency and the Italian Space Agency – investigated Saturn, its rings and moons. Cassini delivered spectacular findings. Enceladus, only 313 miles (504 kilometers) in diameter, harbors a liquid ocean beneath its icy crust that spans the entire moon.

Geysers at the moon's south pole shoot gas and ice grains formed from the ocean water into space.

Advertisement

Though the Cassini engineers didn't anticipate analyzing ice grains that Enceladus was actively emitting, they did pack a dust analyzer on the spacecraft. This instrument measured the emitted ice grains individually and told researchers about the composition of the subsurface ocean.

As a planetary scientist and astrobiologist who studies ice grains from Enceladus, I'm interested in whether there is life on this or other icy moons. I also want to understand how scientists like me could detect it.

Ingredients for life

Just like Earth's oceans, Enceladus' ocean contains salt, most of which is sodium chloride, commonly known as table salt. The ocean also contains various carbon-based compounds, and it has a process called tidal heating that generates energy within the moon. Liquid water, carbon-based chemistry and energy are all key ingredients for life.

In 2023, I and others scientists found phosphate, another life-supporting compound, in ice grains originating from Enceladus' ocean. Phosphate, a form of phosphorus, is vital for all life on Earth. It is part of DNA, cell membranes and bones. This was the first time that scientists detected this compound in an extraterrestrial water ocean.

Advertisement

Enceladus' rocky core likely interacts with the water ocean through hydrothermal vents. These hot, geyserlike structures protrude from the ocean floor. Scientists predict that a similar setting may have been the birthplace of life on Earth.

A diagram showing the inside of a gray moon, which has a hot rocky core.
The interior of Saturn's moon Enceladus.
Surface: NASA/JPL-Caltech/Space Science Institute; interior: LPG-CNRS/U. Nantes/U. Angers. Graphic composition: ESA

Detecting potential life

As of now, nobody has ever detected life beyond Earth. But scientists agree that Enceladus is a very promising place to look for life. So, how do we go about looking?

In a paper published in March 2024, my colleagues and I conducted a laboratory test that simulated whether dust analyzer instruments on spacecraft could detect and identify traces of life in the emitted ice grains.

To simulate the detection of ice grains as dust analyzers in space record them, we used a laboratory setup on Earth. Using this setup, we injected a tiny water beam that contained bacterial cells into a vacuum, where the beam disintegrated into droplets. Each droplet contained, in theory, one bacterial cell.

Then, we shot a laser at the individual droplets, which created charged ions from the water and the cell compounds. We measured the charged ions using a technique called mass spectrometry. These measurements helped us predict what dust analyzer instruments on a spacecraft should find if they encountered a bacterial cell contained in an ice grain.

Advertisement

We found these instruments would do a good job identifying cellular material. Instruments designed to analyze single ice grains should be able to identify bacterial cells, even if there is only 0.01% of the constituents of a single cell in an ice grain from an Enceladus-like geyser.

The analyzers could pick up a number of potential signatures from cellular material, amino acids and fatty acids. Detected amino acids represent either fragments of the cell's proteins or metabolites, which are small molecules participating in chemical reactions within the cell. Fatty acids are fragments of lipids that make up the cell's membranes.

In our experiments, we used a bacteria named Sphingopyxis alaskensis. Cells of this culture are extremely tiny – the same size as cells that might be able to fit into ice grains emitted from Enceladus. In addition to their small size, these cells like cold environments, and they need only a few nutrients to survive and grow, similar to how life adapted to the conditions in Enceladus' ocean would probably be.

The specific dust analyzer on Cassini didn't have the analytical capabilities to identify cellular material in the ice grains. However, scientists are already designing instruments with much greater capabilities for potential future Enceladus missions. Our experimental results will inform the planning and design of these instruments.

Advertisement

Future missions

Enceladus is one of the main targets for future missions from NASA and the European Space Agency. In 2022, NASA announced that a mission to Enceladus had the second-highest priority as they picked their next big missions – a Uranus mission had the highest priority.

The European agency recently announced that Enceladus is the top target for its next big mission. This mission would likely include a highly capable dust analyzer for ice grain analysis.

Enceladus isn't the only moon with a liquid water ocean. Jupiter's moon Europa also has an ocean that spans the entire moon underneath its icy crust. Ice grains on Europa float up above the surface, and some scientists think Europa may even have geysers like Enceladus that shoot grains into space. Our research will also study ice grains from Europa.

NASA's Europa Clipper mission will visit Europa in the coming years. Clipper is to launch in October 2024 and arrive at Jupiter in April 2030. One of the two mass spectrometers on the spacecraft, the SUrface Dust Analyzer, is designed for single ice grain analysis.

Advertisement
A metal instrument with a circular door open to reveal a mesh strainer designed to catch dust.
The SUrface Dust Analyzer instrument on Clipper will analyze ice grains from Jupiter's moon Europa.
NASA/CU Boulder/Glenn Asakawa

Our study demonstrates that this instrument will be able to find even tiny fractions of a bacterial cell, if present in only a few emitted ice grains.

With these space agencies' near-future plans and the results of our study, the prospects of upcoming space missions visiting Enceladus or Europa are incredibly exciting. We now know that with current and future instrumentation, scientists should be able to find out whether there is life on any of these moons.The Conversation

Fabian Klenner, Postdoctoral Scholar in Earth and Space Sciences, University of Washington

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

Sourdough under the microscope reveals microbes cultivated over generations

Published

on

theconversation.com – Daniel Veghte, Senior Research Associate Engineer, The Ohio – 2024-04-30 07:28:14

Microbes make a home among the starch grains of your sourdough starter.

Daniel Veghte, CC BY-SA

Daniel Veghte, The Ohio State University

Sourdough is the oldest kind of leavened bread in recorded history, and people have been eating it for thousands of years. The components of creating a sourdough starter are very simple – flour and . Mixing them produces a culture where yeast and bacteria ferment the sugars in flour, making byproducts that give sourdough its characteristic and smell. They are also what make it rise in the absence of other leavening agents.

Advertisement

My sourdough starter, affectionately deemed the “Fosters” starter, was passed down to me by my grandparents, who received it from my grandmother's college roommate. It has followed me throughout my academic career across the country, from undergrad in New Mexico to graduate school in Pennsylvania to postdoctoral work in Washington.

Currently, it resides in the Midwest, where I work at The Ohio State University as a senior research associate, collaborating with researchers to characterize samples in a wide variety of fields ranging from food science to material science.

As part of one of the microscopy courses I instruct at the university, I decided to take a closer look at the microbial community in my 's sourdough starter with the microscope I use in my day-to-day research.

Microscopy image of rod-shaped bacteria, elongated and spherical yeast, and globular starch grains

Each sourdough starter has a unique mix of microbes.

Daniel Veghte, CC BY-SA

Advertisement

Scanning electron microscopes

Scanning electron microscopy, or SEM, is a powerful tool that can image the surface of samples at the nanometer scale. For comparison, a human hair is between 10 to 150 micrometers, and SEM can observe features that are 10,000 times smaller.

Since SEM uses electrons instead of light for imaging, there are limitations to what can be imaged in the microscope. Samples must be electrically conductive and able to withstand the very low pressures in a vacuum. Low-pressure environments are generally unfavorable for microbes, since these conditions will cause the water in cells to evaporate, deforming their structure.

To prepare samples for SEM analysis, researchers use a method called critical point drying that carefully dries the sample to reduce unwanted artifacts and preserve fine details. The sample is then coated with a thin layer of iridium metal to make it conductive.

Round metal disk on a platform surrounded by a large cylindrical device

Scanning electron microscopes can image samples at the nanoscale level.

Daniel Veghte, CC BY-SA

Advertisement

Exploring a sourdough starter

Since sourdough starters are created from wild yeast and bacteria in the flour, it creates a favorable for many types of microbes to flourish. There can be more than 20 different species of yeast and 50 different species of bacteria in a sourdough starter. The most robust become the dominant species.

You can visually observe the microbial complexity of sourdough starter by imaging the different components that vary in size and morphology, yeast and bacteria. However, a full understanding of all the diversity present in the starter would require a complete gene sequencing.

The main component that gives the starter texture are starch grains from the flour. These grains, colored green in the image, are identifiable as relatively large globular structures approximately 8 micrometers in diameter.

Microscopy image of rod-shaped bacteria, elongated and spherical yeast, and globular starch grains

A false-colored scanning electron microscope image of a sourdough starter shows starch grains (green), yeast (red) and bacteria (blue).

Daniel Veghte, CC BY-SA

Advertisement

Giving rise to the starter is the yeast, colored red. As the yeast grows, it ferments sugars from the starch grains and releases carbon dioxide bubbles and alcohol as byproducts that make the dough rise. Yeast generally falls in the range of 2 to 10 micrometers in size and are round to elongated in shape. There are two distinct yeast types visible in this image, one that is nearly round, at the bottom left, and another that is elongated, at the top right.

Bacteria, colored blue, metabolize sugars and release byproducts such as lactic acid and acetic acid. These byproducts act as a preservative and are what give the starter its distinctive sour smell and taste. In this image, bacteria have pill-like shapes that are approximately 2 micrometers in size.

Now, the next time you eat sourdough bread or sourdough waffles – try them, they're delicious! – you can visualize the rich array of microorganisms that give each piece its distinctive flavor.The Conversation

Daniel Veghte, Senior Research Associate Engineer, The Ohio State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement
Continue Reading

The Conversation

‘What is a fact?’ A humanities class prepares STEM students to be better scientists

Published

on

theconversation.com – Timothy Morton, Rita Shea Guffey Chair of English, Rice – 2024-04-30 07:29:12

A favorite class focuses on the tendency to see meaningful patterns where there aren't any, such as constellations of .

Yuga Kurita/Moment via Getty Images

Timothy Morton, Rice University

Text saying: Uncommon Courses, from The Conversation

Uncommon Courses is an occasional from The Conversation U.S. highlighting unconventional approaches to teaching.

Advertisement

Title of course:

What Is a Fact?

What prompted the idea for the course?

With all the conspiracy theories floating around in 2020 when hit, I wanted to my learn to identify and deal with them. I was also concerned about political propaganda. And in my STEM-heavy school, I wanted to showcase what humanities scholars can do. So I created this class, which is distilled humanities for freshmen. Almost every student so far has been a science, technology, engineering and math major.

What does the course explore?

We start with a called What Is Data? In Latin, “data” just means “things that are given.” Data can be in the form of measurements: “This bowlful of weighs x.” But data can also mean “it reminds me of my grandma.” How can you tell when something could be meaningful, or whether it's just nonsense?

A later class that students find especially interesting is on apophenia, the tendency to see patterns where there aren't any, like the man in the Moon, or constellations of stars.

Advertisement

chart illustrating dots of data, colored and connected in various ways as information, knowledge, insight, wisdom and conspiracy theory

Conspiracy theories connect a lot of dots, but that doesn't make them right.

Screenshot of a meme

Why is this course relevant now?

A fact is an interpretation of data. In physics class, you learn how to interpret physics data, find patterns, relate those patterns to other ones, and produce facts about them. If your argument hangs together logically, your interpretation can appear in the journal Nature Physics.

Humanities classes, however, prepare you to understand what facts are, period – whether they're based on biology or on the Bible, nutrition science or novels.

What's a critical lesson from the course?

One critical lesson is that many big conspiracy theories such as QAnon are about jumping to conclusions as quickly as possible. Being a good student and a good scholar means accepting that what you're examining might not be meaningful or might not indicate a pattern. What we're exploring here is how not to jump to conclusions. And this lesson applies as much to stuff in the real world as it does to lab work.

Advertisement

What materials does the course feature?

We watch YouTuber hbomberguy debunking global warming denialism. We read Kurt Gödel on how logical systems must always be flawed. We read poems and stories, introducing science majors to interpreting artistic data, a process every bit as rigorous as interpreting scientific data.

What will the course prepare students to do?

Without the kinds of critical thinking this course teaches, scientists can be susceptible to propaganda and unable to share their ideas effectively, whether it's in the or to their colleagues, friends and family.

Students learn to look at the world with fresh, skeptical eyes. They learn to identify illogical arguments and rhetorical strong-arm tactics. In the Middle Ages, humanities – grammar, logic, rhetoric – prepared you to do science. What Is a Fact? is like that, helping students see how collecting data and being skeptical don't stop once you've left the lab. A questioning, open-minded attitude is an essential skill.The Conversation

Timothy Morton, Rita Shea Guffey Chair of English, Rice University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement
Continue Reading

The Conversation

Electric vehicles are usually safer for their occupants – but not necessarily for everyone else

Published

on

theconversation.com – Jingwen Hu, Research Professor of Mechanical Engineering, of Michigan – 2024-04-30 07:28:40

A crash test car after a side impact.

Patrick Pleul/picture alliance via Getty Images

Jingwen Hu, University of Michigan

The future of automobiles is electric, but many people worry about the safety of 's electric vehicles.

Advertisement

Public opinion about EV crash safety often hinges on a few high-profile fire incidents. Those safety concerns are arguably misplaced, and the actual safety of EVs is more nuanced.

I've researched vehicle safety for more than two decades, focusing on the biomechanics of impact injuries in motor vehicle crashes. Here's my take on how well the current crop of EVs protects people:

The burning question

EVs and internal combustion vehicles undergo the same crash-testing procedures to evaluate their crashworthiness and occupant protection. These tests are conducted by the National Highway Safety Administration's New Car Assessment Program and the Insurance Institute for Highway Safety.

These analyses use crash test dummies representing midsize male and small female occupants to evaluate the risk of injuries. The tests can evaluate fire hazard either caused by thermal runaway – when lithium-ion batteries experience rapid uncontrollable heating – in ruptured EV batteries or gas tank leaks of internal combustion vehicles.

Advertisement

None of the Insurance Institute for Highway Safety crash tests of EVs have sparked any fires. New Car Assessment Program crash test reports yield comparable findings. While real-world data analysis on vehicle fires involving EVs is limited, it appears that and social media scrutiny of EV fire hazard is blown out of proportion.

Weighty matters

What stands out about EV safety is that crash test results, field injury data and injury claims from the Insurance Institute for Highway Safety all reveal that EVs are superior to their internal combustion counterparts in protecting their occupants.

This EV advantage boils down to a blend of physics and cutting-edge technologies.

Thanks to their hefty battery packs positioned at the base of the car, EVs tend to carry considerably more weight and enjoy lower centers of gravity than conventional vehicles. This setup drastically reduces the likelihood of rollover accidents, which have a high rate of fatalities. Moreover, crash dynamics dictate that in a collision between two vehicles, the heavier one a distinct advantage because it doesn't slow down as abruptly, a factor strongly linked to occupant injury risks.

Advertisement

On the technology side, most EVs represent newer models equipped with -of-the-art safety , from advanced energy-absorbing materials to cutting-edge crash avoidance systems and upgraded seat-belt and -bag setups. These features collectively bolster occupant protection.

Crash tests by the Insurance Institute for Highway Safety show that most EVs are comparatively safe for their occupants.

Where risks do rise

Unfortunately, EVs also present numerous safety challenges.

While the inherent weightiness of EVs offers a natural advantage in protecting occupants, it also means that other vehicles bear the burden of absorbing more crash energy in collisions with heavier EVs. This dilemma is central to the concept of “crash compatibility,” a well-established field of safety research.

Consider a scenario in which a small sedan collides with a heavy truck. The occupants in the sedan always face higher injury risks. Crash compatibility studies measure vehicle “aggressivity” by the level of harm inflicted on other vehicles, and heavier models are almost always deemed more aggressive.

Advertisement

In addition, the increased energy associated with impacts from heavier EVs, particularly electric pickups, poses significant challenges for highway guardrails. Moreover, EVs – especially those operating silently at low speeds – pose increased risks to pedestrians, bicyclists and others who may not hear the EVs approach.

Better technologies, better safety

While EVs offer safety advancements for their own occupants, it's crucial to acknowledge and tackle the safety concerns they pose for others on the road.

I believe that technological advancements will serve as the primary catalyst for overcoming the safety hurdles by EVs. Lightweight materials, more powerful sensing technologies and safety algorithms, improved seat belts and better air bags will play pivotal roles in addressing these challenges.

Moreover, the tight connection between EVs and rapidly evolving computing capabilities is likely to foster the of new safety technologies.The Conversation

Jingwen Hu, Research Professor of Mechanical Engineering, University of Michigan

Advertisement

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Continue Reading

News from the South

Trending