Connect with us

The Conversation

Pictures have been teaching doctors medicine for centuries − a medical illustrator explains how

Published

on

Pictures have been teaching doctors medicine for centuries − a medical illustrator explains how

Artists reveal what cannot be seen.
Henry Gray, Anthony Edwward Spitzka/Internet Archive via Flickr

James A. Perkins, Rochester Institute of Technology

“Medical illustrators draw what can’t be seen, watch what’s never been done, and tell thousands about it without saying a word.”

For decades, this slogan appeared on the website and printed materials of the Association of Medical Illustrators. Although the association no longer uses this tag line, it’s still an accurate description of the profession.

As a practicing medical illustrator for over 30 years, I draw what can’t be seen and watch what’s never been done on a daily basis. And I teach my students to do the same.

But what exactly does all of that mean, and how does it improve medicine?

Tell thousands about it without saying a word

You may have heard the adage, “A picture is worth a thousand words.” In that same vein, medical illustrators use pictures to teach complex scientific concepts. As the famed medical illustrator Frank H. Netter once said, “(Pictures) eliminate the need for the lecturer or the author to translate what he has in his mind into words and for the listener or the student to translate those words back into a mental image.”

The use of illustrations to communicate medical information has a long history, dating back at least to ancient Egypt and flourishing in the Renaissance. The work of 16th century anatomists Giacomo Berengario da Carpi and Andreas Vesalius set a precedent for the use of detailed illustrations to teach anatomy, a practice that continues to this day.

Illustration depicting the musculature of the human body with text identifying each component
This is a page from Andreas Vesalius’ ‘Suorum de humani corporis fabrica librorum epitome.’
Andreas Vesalius/Wellcome Collection

The proliferation of illustrated anatomy atlases in the Renaissance coincided with the widespread acceptance of cadaver dissection. The earliest known human dissections were performed in the third century BCE. The practice was prohibited throughout the Middle Ages but became common again in the 13th and 14th centuries.

By the 1500s, dissections, usually of executed criminals, had become public spectacles. The demand for bodies eventually outstripped the supply of executed convicts, leading to the unscrupulous practices of grave robbing and even murder.

In addition to depicting the location and features of an object such as an organ, illustrations proved essential in describing events happening over time, such as the progression of a disease or the steps in a surgical procedure. Generations of surgeons learned new procedures from meticulously illustrated surgical atlases. An early example of physiology illustration, William Harvey’s classic 17th century work on the circulation of blood, “Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus,” depicts the direction of blood flow through the veins of the forearm.

Illustration showing an arm gripping a pole with a tourniquet wrapped around the elbow.
This image from William Harvey’s ‘Exercitatio’ depicts the direction of normal blood circulation.
William Harvey/Wikimedia Commons

Nowadays, surgeons can practice a procedure hundreds of times in virtual reality before trying it on a real patient. Modern physiology and pathology texts include countless illustrations of the body, not just at the anatomical level but also the cellular and molecular. So valuable are these depictions of complex pathways and interactions that many science journals now require papers to include a graphical abstract, a single illustration that summarizes the content of each paper.

Draw what can’t be seen

Medical illustrators employ special tools and training to visualize things that are normally hidden from the naked eye.

All professionally trained medical illustrators study human gross anatomy, including dissecting a human cadaver, in order to visualize the internal structures of the body. When a cadaver isn’t readily available to serve as reference for an illustration, illustrators use medical imaging, such as CT and MRI scans, and reconstruct the body in three dimensions.

At the cellular level, medical illustrators must understand how to use microscopy techniques in order to find references for accurate depictions of cellular structures.

Objects at the smallest scale – atoms and many molecules – are smaller than the wavelength of visible light. This means they are below the theoretical limit of what can be seen, even with the most powerful light microscope. So researchers experimentally determine the structures of molecules using techniques like X-ray crystallography and nuclear magnetic resonance spectroscopy instead. These techniques use X-rays or radio waves, respectively, to determine how atoms are arranged.

CDC illustration of COVID-19 virus
This illustration, created by the Centers for Disease Control and Prevention, depicts the notorious spiked structure of the virus that causes COVID-19.
Alissa Eckert, MSMI; Dan Higgins, MAMS via CDC

Medical illustrators learn to locate and retrieve data on the structure of molecules from sites like the RCSB Protein Databank. They also use a host of visualization applications and software plug-ins to render these structures in 3D.

Medical illustrators Alissa Eckert and Dan Higgins at the U.S. Centers for Disease Control and Prevention used these techniques to create the famous red-spiked coronavirus image that went viral during the pandemic.

Watch what’s never been done

Obviously, you can’t really watch something that has never been done. But medical illustrators can help conceptualize new processes and techniques before they become a reality.

For example, they might illustrate how an experimental drug may theoretically work before it enters testing. Similarly, illustrations can be critically important in pre-surgical planning, especially in complex cases.

My favorite example of the role of medical illustration in surgery is the separation of conjoined twins Abbigail and Isabelle Carlsen at the Mayo Clinic in 2006. Working from nearly 6,000 radiographic images, the clinic’s medical illustrators produced five detailed illustrations of the twins’ anatomy. They even generated 3D-printed models of important structures, notably their shared liver.

The illustrations were critical in training a team of 70 surgeons, nurses and technicians involved in the case. They also served as a road map for the ultimately successful surgery, hung up on the walls of the operating theater during the procedure.

Road to becoming a medical illustrator

In order to draw what can’t be seen and watch what’s never been done, medical illustrators require specialized training. Most medical illustrators in North America are trained at master’s programs accredited by the Association of Medical Illustrators in conjunction with the Commission on Accreditation of Allied Health Education Programs.

Since the profession requires a strong understanding of the biomedical sciences, students accepted into these programs must have a strong science background along with a portfolio demonstrating outstanding drawing skills. Students often have a double major in biology and art or a major in one area and minor in the other.

Once in the program, their science training continues with human gross anatomy and some combination of courses in neuroanatomy, embryology, histology, cell biology, pathology and immunology. Specialized courses in surgical observation and cellular and molecular visualization also include significant science content.

Scientific illustrator Val Altounian of the journal Science walks viewers through her process.

Students receive extensive training in computer graphics, including 2D digital illustration and animation, 3D computer modeling and animation, interactive media, virtual and augmented reality and educational game and mobile app design. Courses also emphasize the principles of design, including the use of color, layout and motion to create effective visuals.

Medical illustrators learn to consider the educational level of their audience, since their work may be used to educate patients – even kids – in addition to medical professionals. Illustrations made for a child recently diagnosed with leukemia would be very different from those aimed at the oncologist treating the disease.

After entering the workforce, many medical illustrators pursue optional board certification to become a certified medical illustrator, which recognizes professional competency and encourages continued learning. Continued certification requires 35 hours of continuing education every five years in the biomedical sciences, artistic techniques and business practices.

All of this education and training is essential to ensure that medical illustrators communicate complex scientific information with accuracy and clarity. I like to think of medical illustrators as teachers – they instruct with pictures.The Conversation

James A. Perkins, Distinguished Professor of Medical Illustration, Rochester Institute of Technology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

Chaos gardening – wild beauty, or just a mess? A sustainable landscape specialist explains the trend

Published

on

theconversation.com – Deryn Davidson, Sustainable Landscape State Specialist, Extension, Colorado State University – 2025-08-19 07:35:00


Chaos gardening is a trending, informal practice of scattering mixed seeds—often leftover or wildflower mixes—onto soil with little planning, resulting in a dense, colorful garden. It appeals as a low-pressure, playful alternative to traditional garden design, which can feel intimidating and time-consuming. Success depends on some “guardrails”: choosing compatible, region-appropriate plants, prepping the site, and supporting pollinators with native flowers. However, chaos gardening isn’t ecological restoration and requires maintenance to thrive. While not a replacement for curated gardens, it can inspire novice gardeners, encouraging experimentation, connection with nature, and appreciation of biodiversity through a more intuitive gardening approach.

A mix of annuals and perennials can look colorful and carefree.
Deryn Davidson

Deryn Davidson, Colorado State University

If you’ve spent any time in the gardening corners of social media lately, you’ve likely come across a trend called “chaos gardening.”

The name alone is eye-catching – equal parts fun, rebellious and slightly alarming. Picture someone tossing random seeds into bare soil, watering once or twice, and ending up with a backyard jungle of blooms. No rows, no color coordination, no spacing charts. Just sprinkle and hope for the best.

As a sustainable landscape specialist at Colorado State University Extension, I think a lot about how to help people make designed landscapes more sustainable. Occasionally, a new trend like this one crops up claiming to be the silver bullet of gardening – supposedly it saves water, saves the bees and requires no maintenance.

But what is chaos gardening, really? And does it work? As with most viral trends, the answer is: sometimes.

What chaos gardening is and isn’t

At its core, chaos gardening is the practice of mixing a wide variety of seeds, often including leftover packets, wildflower mixes, or cut flower favorites, and scattering them over a planting area with minimal planning.

The goal is to create a dense, colorful garden that surprises you with its variety. For many, it’s a low-pressure, joyful way to experiment.

But chaos gardening isn’t the same as ecological restoration, pollinator meadow planting or native prairie establishment. Unlike chaos gardening, all of these techniques rely on careful species selection, site prep and long-term management.

Chaos gardening is a bit like making soup from everything in your pantry – it might be delicious, but there are no guarantees.

Chaos gardening’s appeal

One reason chaos gardening may be catching on is because it sidesteps the rules of garden design. A traditional landscape design approach is effective and appropriate for many settings, but it is a time investment and can feel intimidating. Design elements and principles, and matching color schemes, don’t fit everyone’s style or skill set.

A flower bed with a curved border, and curved rows of white and pink flowers, with equally spaced hedges and bushes
Organized and manicured home gardens such as this can be stressful to maintain.
Elenathewise/iStock via Getty Images Plus

Even the apparently relaxed layers of blooms and informal charm of an English cottage garden actually result from careful planning. Chaos gardening, by contrast, lets go of control. It offers a playful, forgiving entry point into growing things. In a way, chaos gardening is an antidote to the pressure of perfection, especially the kind found in highly curated, formal landscapes.

There’s also the allure of ease. People want gardening to be simple. If chaos gardening brings more people into the joy and mess of growing things, I consider that a win in itself. Broader research has found that emotional connection and accessibility are major motivators for gardening, often more than environmental impact.

When does chaos gardening work?

The best outcomes from chaos gardening happen when the chaos has a few guardrails:

  • Choose plants with similar needs. Most successful chaos gardens rely on sun-loving annuals that grow quickly and bloom prolifically, like zinnias, cosmos, marigolds, snapdragons and sunflowers. These are also excellent cut flowers to use in bouquets, which makes them doubly rewarding.

  • Consider your region. A chaos garden that thrives in Colorado might flop in North Carolina. It is beneficial to select seed mixes or individual varieties suited to your area since factors like soil type and growing season length matter. Different plants have unique needs beyond just sun and water; soil pH, cold hardiness and other conditions can make a big difference.

  • Think about pollinators. Mixing in nectar- and pollen-rich flowers native to North America, such as black-eyed Susans, bee balm or coneflowers, provides valuable resources for native bees, butterflies, moths and other local pollinators. These species benefit even more if you plan your garden with phenology – that is, nature’s calendar – in mind. By maintaining blooms from early spring through late fall, you ensure a steady food supply throughout the growing season. Plus, a diverse plant palette supports greater pollinator abundance and diversity.

  • Prep your site. Even “chaos” needs a little order. Removing weeds, loosening the top layer of soil and watering regularly, especially during germination when seeds are sprouting, will dramatically improve your results. Successful seed germination requires direct seed-to-soil contact and consistent moisture; if seeds begin to grow and then dry out, many species will not survive.

When does chaos gardening not work?

There are a few key pitfalls to chaos gardening that often get left out of the online hype:

  • Wrong plant, wrong place. If your mix includes shade-loving plants and your garden is in full sun, or drought-tolerant plants whose seeds end up in a soggy low spot, they’ll struggle to grow.

  • Invasive species and misidentified natives. Some wildflower mixes, especially inexpensive or mass-market ones, claim to be native but actually contain non-native species that can spread beyond your garden and become invasive. While many non-natives are harmless, some spread quickly and disrupt natural ecosystems. Check seed labels carefully and choose regionally appropriate native or adapted species whenever possible.

  • Soil, sun and water still matter. Gardening is always a dialogue with place. Even if you’re embracing chaos, taking notes, observing how light moves through your space, and understanding your soil type will help you know your site better, and choose appropriate plants.

  • Maintenance is still a thing. Despite the “toss and walk away” aesthetic, chaos gardens still require care. Watering, weeding and eventually cutting back or removing spent annuals are all part of the cycle.

Beyond the hashtag

Beneath the chaos gardening memes, there’s something real happening: a growing interest in a freer, more intuitive way of gardening. And that’s worth paying attention to.

Once someone has success with a zinnia or cosmos, they may be inspired to try more gardening. They might start noticing which flowers the bees are visiting in their garden. They may discover native plants and pay attention to the soil they are tending, seeing how both are part of a larger, living system. A chaotic beginning can become something deeper.

An orange and black butterfly perched on top of a flowerhead with small, pink flowers
Choosing nectar-rich flowers such as milkweed for your seed mix can help local pollinators.
Brian Woolman/iStock via Getty Images Plus

Chaos gardening might not replace the structured borders of a manicured garden or a carefully curated pollinator patch, but it might get someone new into the garden. It might lower the stakes, invite experimentation and help people see beauty in abundance rather than control.

If that’s the entry point someone needs, then let the chaos begin.The Conversation

Deryn Davidson, Sustainable Landscape State Specialist, Extension, Colorado State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Organized and manicured home gardens such as this can be stressful to maintain.
Elenathewise/iStock via Getty Images Plus

Even the apparently relaxed layers of blooms and informal charm of an English cottage garden actually result from careful planning. Chaos gardening, by contrast, lets go of control. It offers a playful, forgiving entry point into growing things. In a way, chaos gardening is an antidote to the pressure of perfection, especially the kind found in highly curated, formal landscapes.

There’s also the allure of ease. People want gardening to be simple. If chaos gardening brings more people into the joy and mess of growing things, I consider that a win in itself. Broader research has found that emotional connection and accessibility are major motivators for gardening, often more than environmental impact.

When does chaos gardening work?

The best outcomes from chaos gardening happen when the chaos has a few guardrails:

  • Choose plants with similar needs. Most successful chaos gardens rely on sun-loving annuals that grow quickly and bloom prolifically, like zinnias, cosmos, marigolds, snapdragons and sunflowers. These are also excellent cut flowers to use in bouquets, which makes them doubly rewarding.

  • Consider your region. A chaos garden that thrives in Colorado might flop in North Carolina. It is beneficial to select seed mixes or individual varieties suited to your area since factors like soil type and growing season length matter. Different plants have unique needs beyond just sun and water; soil pH, cold hardiness and other conditions can make a big difference.

  • Think about pollinators. Mixing in nectar- and pollen-rich flowers native to North America, such as black-eyed Susans, bee balm or coneflowers, provides valuable resources for native bees, butterflies, moths and other local pollinators. These species benefit even more if you plan your garden with phenology – that is, nature’s calendar – in mind. By maintaining blooms from early spring through late fall, you ensure a steady food supply throughout the growing season. Plus, a diverse plant palette supports greater pollinator abundance and diversity.

  • Prep your site. Even “chaos” needs a little order. Removing weeds, loosening the top layer of soil and watering regularly, especially during germination when seeds are sprouting, will dramatically improve your results. Successful seed germination requires direct seed-to-soil contact and consistent moisture; if seeds begin to grow and then dry out, many species will not survive.

When does chaos gardening not work?

There are a few key pitfalls to chaos gardening that often get left out of the online hype:

  • Wrong plant, wrong place. If your mix includes shade-loving plants and your garden is in full sun, or drought-tolerant plants whose seeds end up in a soggy low spot, they’ll struggle to grow.

  • Invasive species and misidentified natives. Some wildflower mixes, especially inexpensive or mass-market ones, claim to be native but actually contain non-native species that can spread beyond your garden and become invasive. While many non-natives are harmless, some spread quickly and disrupt natural ecosystems. Check seed labels carefully and choose regionally appropriate native or adapted species whenever possible.

  • Soil, sun and water still matter. Gardening is always a dialogue with place. Even if you’re embracing chaos, taking notes, observing how light moves through your space, and understanding your soil type will help you know your site better, and choose appropriate plants.

  • Maintenance is still a thing. Despite the “toss and walk away” aesthetic, chaos gardens still require care. Watering, weeding and eventually cutting back or removing spent annuals are all part of the cycle.

Beyond the hashtag

Beneath the chaos gardening memes, there’s something real happening: a growing interest in a freer, more intuitive way of gardening. And that’s worth paying attention to.

Once someone has success with a zinnia or cosmos, they may be inspired to try more gardening. They might start noticing which flowers the bees are visiting in their garden. They may discover native plants and pay attention to the soil they are tending, seeing how both are part of a larger, living system. A chaotic beginning can become something deeper.

An orange and black butterfly perched on top of a flowerhead with small, pink flowers

Choosing nectar-rich flowers such as milkweed for your seed mix can help local pollinators.
Brian Woolman/iStock via Getty Images Plus

Chaos gardening might not replace the structured borders of a manicured garden or a carefully curated pollinator patch, but it might get someone new into the garden. It might lower the stakes, invite experimentation and help people see beauty in abundance rather than control.

If that’s the entry point someone needs, then let the chaos begin.

Read More

The post Chaos gardening – wild beauty, or just a mess? A sustainable landscape specialist explains the trend appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

This content focuses on gardening practices and environmental awareness without promoting any particular political ideology. It presents information in a balanced, informative manner, emphasizing sustainability and ecological considerations while avoiding partisan language or viewpoints. The article encourages accessibility and experimentation in gardening, appealing broadly without aligning with left- or right-leaning political perspectives.

Continue Reading

The Conversation

RFK Jr.’s plans to overhaul ‘vaccine court’ system would face legal and scientific challenges

Published

on

theconversation.com – Anna Kirkland, Professor of Women’s and Gender Studies, University of Michigan – 2025-08-15 07:39:00


The Vaccine Injury Compensation Program (VICP), established in 1986, provides a legal process for compensating individuals harmed by vaccines while protecting manufacturers from lawsuits. Health Secretary Robert F. Kennedy Jr. criticizes the system as biased and slow, proposing reforms or dismantling it. Experts acknowledge the program needs updates, such as increasing judges, adjusting damage caps, and expanding vaccine coverage. However, significant changes face legal and political challenges. Kennedy’s suggestion to add unproven injuries like autism to the list contradicts scientific consensus and may face lawsuits. Proposals to move claims to regular courts could hinder compensation efforts and threaten vaccine supply stability.

The Vaccine Injury Compensation Program was established in 1986 by an act of Congress.
MarsBars/iStock via Getty Images Plus

Anna Kirkland, University of Michigan

For almost 40 years, people who suspect they’ve been harmed by a vaccine have been able to turn to a little-known system called the Vaccine Injury Compensation Program – often simply called the vaccine court.

Health and Human Services Secretary Robert F. Kennedy Jr. has long been a critic of the vaccine court, calling it “biased” against compensating people, slow and unfair. He has said that he wants to “revolutionize” or “fix” this system.

I’m a scholar of law, health and medicine. I investigated the history, politics and debates about the Vaccine Injury Compensation Program in my book “Vaccine Court: The Law and Politics of Injury.”

Although vaccines are extensively tested and monitored, and are both overwhelmingly safe for the vast majority of people and extremely cost-effective, some people will experience a harmful reaction to a vaccine. The vaccine court establishes a way to figure out who those people are and to provide justice to them.

Having studied the vaccine court for 15 years, I agree that it could use some fixing. But changing it dramatically will be difficult and potentially damaging to public health.

Deciphering vaccine injuries

The Vaccine Injury Compensation Program is essentially a process that enables doctors, lawyers, patients, parents and government officials to determine who deserves compensation for a legitimate vaccine injury.

It was established in 1986 by an act of Congress to solve a specific social problem: possible vaccine injuries to children from the whole-cell pertussis vaccine. That vaccine, which was discontinued in the U.S. in the 1990s, could cause alarming side effects like prolonged crying and convulsions. Parents sued vaccine manufacturers, and some stopped producing vaccines.

Congress was worried that lawsuits would collapse the country’s vaccine supply, allowing diseases to make a comeback. The National Childhood Vaccine Injury Act of 1986 created the vaccine court process and shielded vaccine manufacturers from these lawsuits.

Here’s how it works: A person who feels they have experienced a vaccine-related injury files a claim to be heard by a legal official called a special master in the U.S. Court of Federal Claims. The Health and Human Services secretary is named as the defendant and is represented by Department of Justice attorneys.

A syringe leaning against a gavel on a white background
Many experts agree that the vaccine compensation program could use some updates.
t_kimura via iStock / Getty Images Plus

Doctors who work for HHS evaluate the medical records and make a recommendation about whether they think the vaccine caused the person’s medical problem. Some agreed-upon vaccine injuries are listed for automatic compensation, while other outcomes that are scientifically contested go through a hearing to determine if the vaccine caused the problem.

Awards come from a trust fund, built up through a 75-cent excise tax on each dose of covered vaccine sold. Petitioners’ attorneys who specialize in vaccine injury claims are paid by the trust fund, whether they win or lose.

Some updates are needed

Much has changed in the decades since Congress wrote the law, but Congress has not enacted updates to keep up.

For instance, the law supplies only eight special masters to hear all the cases, but the caseload has risen dramatically as more vaccines have been covered by the law. It set a damages cap of US$250,000 in 1986 but did not account for inflation. The statute of limitations for an injury is three years, but in my research, I found many people file too late and miss their chance.

When the law was written, it only covered vaccines recommended for children. In 2023, the program expanded to include vaccines for pregnant women. Vaccines just for adults, like shingles, are not covered. COVID-19 vaccine claims go to another system for emergency countermeasures vaccines that has been widely criticized. These vaccines could be added to the program, as lawyers who bring claims there have advocated.

These reform ideas are “friendly amendments” with bipartisan support. Kennedy has mentioned some of them, too.

A complex system is hard to revolutionize

Kennedy hasn’t publicly stated enough details about his plan for the vaccine court to reveal the changes he intends to make. The first and least disruptive course of action would be to ask Congress to pass the bipartisan reforms noted above.

But some of his comments suggest he may seek to dismantle it, not fix it. None of his options are straightforward, however, and consequences are hard to predict.

Robert F. Kennedy Jr., Secretary of the Department of Health and Human Services, testifying in Congress
HHS Secretary Robert Kennedy Jr. has said he plans to revolutionize the vaccine court.
Kayla Bartkowski / Staff, Getty Images News

Straight up changing the vaccine court’s structure would probably be the most difficult path. It requires Congress to amend the 1986 law that set it up and President Donald Trump to sign the legislation. Passing the bill to dismantle it requires the same process. Either direction involves all the difficulties of getting a contentious bill through Congress. Even the “friendly amendments” are hard – a 2021 bill to fix the vaccine court was introduced but failed to advance.

However, there are several less direct possibilities.

Adding autism to the injuries list

Kennedy has long supported discredited claims about harms from vaccines, but the vaccine court has been a bulwark against claims that lack mainstream scientific support. For example, the vaccine court held a yearslong court process from 2002 to 2010 and found that autism was not a vaccine injury. The autism trials drew on 50 expert reports, 939 medical articles and 28 experts testifying on the record. The special masters deciding the cases found that none of the causation hypotheses put forward to connect autism and vaccines were reliable as medical or scientific theories.

Much of Kennedy’s ire is directed at the special masters, who he claims “prioritize the solvency” of the system “over their duty to compensate victims.” But the special masters do not work for him. Rather, they are appointed by a majority of the judges in the Court of Federal Claims for four-year terms – and those judges themselves have 15-year terms. Kennedy cannot legally remove any of them in the middle of their service to install new judges who share his views.

Given that, he may seek to put conditions like autism on the list of presumed vaccine injuries, in effect overturning the special masters’ decisions. Revising the list of recognized injuries to add ones without medical evidence is within Kennedy’s powers, but it would still be difficult. It requires a long administrative process with feedback from an advisory committee and the public. Such revisions have historically been controversial, and are usually linked to major scientific reviews of their validity.

Public health and medical groups are already mobilized against Kennedy’s vaccine policy moves. If he failed to follow legally required procedures while adding new injuries to the list, he could be sued to stop the changes.

Targeting vaccine manufacturers

Kennedy could also lean on his newly reconstituted Advisory Committee on Immunization Practices to withdraw recommendations for certain vaccines, which would also remove them from eligibility in the vaccine compensation court. Lawsuits against manufacturers could then go straight to regular courts. On Aug. 14, 2025, the Department of Health and Human Services may have taken a step in this direction by announcing the revival of a childhood vaccine safety task force in response to a lawsuit by anti-vaccine activists.

Kennedy has also supported legislation that would allow claims currently heard in vaccine court to go to regular courts. These drastic reforms could essentially dismantle the vaccine court.

People claiming vaccine injuries could hope to win damages through personal injury lawsuits in the civil justice system instead of vaccine court, perhaps by convincing a jury or getting a settlement. These types of settlements were what prompted the creation of the vaccine court in the first place. But these lawsuits could be hard to win. There is a higher bar for scientific evidence in regular courts than in vaccine court, and plaintiffs would have to sue large corporations rather than file a government claim.

Raising the idea of reforming the vaccine court has provoked strong reactions across the many groups with a stake in the program. It is a complex system with multiple constituents, and Kennedy’s approaches so far pull in different directions. The push to revolutionize it will test the strength of its complex design, but the vaccine court may yet hold up.The Conversation

Anna Kirkland, Professor of Women’s and Gender Studies, University of Michigan

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post RFK Jr.’s plans to overhaul ‘vaccine court’ system would face legal and scientific challenges appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Center-Left

The content presents a fact-based, nuanced analysis of the Vaccine Injury Compensation Program and Robert F. Kennedy Jr.’s criticisms and proposed reforms. It acknowledges the safety and effectiveness of vaccines, aligns with mainstream scientific consensus, and highlights bipartisan efforts for reform. While it critiques Kennedy’s more controversial positions, especially regarding discredited vaccine-autism links, it does so with measured language and provides context on legal and public health complexities. Overall, the article leans slightly left by supporting established science and public health perspectives but remains balanced and informative without strong partisan rhetoric.

Continue Reading

The Conversation

Genomics can help insect farmers avoid pitfalls of domestication

Published

on

theconversation.com – Christine Picard, Professor of Biology, Indiana University – 2025-08-14 07:29:00


Insect farming is gaining popularity for animal feed, pet food, and human consumption, but domestication poses challenges. Lessons from traditional domestication—selective breeding for desirable traits—apply to insects like silkworms and honeybees, which have become dependent on humans. New insect species such as black soldier flies and mealworms offer sustainable protein by recycling organic waste. However, domestication often reduces genetic diversity and immune strength, increasing vulnerability to diseases, as seen in factory-farmed chickens and monoculture crops like bananas. Modern genomics and gene-editing tools can help monitor and maintain genetic health, preventing collapse and supporting sustainable insect agriculture.

A biologist maintains a large population of black soldier flies for protein farming.
picture alliance/Contributer via Getty Images

Christine Picard, Indiana University and Hector Rosche-Flores, Indiana University

Insects are becoming increasingly popular to grow on farms as feed for other animals, pet food and potentially as food for people. The process of bringing a wild animal into an artificial environment, known as domestication, comes with unique challenges. Luckily, there are important lessons to be learned from all the other animals people have domesticated over millennia.

As researchers who study how domesticating animals changes their genes, we believe that recognizing the vulnerabilities that come with domestication is important. Today’s powerful biotechnology tools can help researchers anticipate and head off issues early on.

Domestication is nothing new

From grain domestication starting as far back as 12,000 years ago to today’s high-tech, genome-based breeding strategies, humans have long bent nature to suit their purposes. By selectively breeding individual plants or animals that have desirable traits – be it appearance, size or behavior – humans have domesticated a whole host of species.

The same principle underlies all domestication attempts, from dogs to crops. A breeder identifies an individual with a desired trait – whether that’s a dog’s talent for tracking or a plant’s ability to withstand pests. Then they breed it to confirm that the desired trait can be passed down to offspring. If it works, the breeder can grow lots of descendants in a lineage with the genomic advantage.

People have made crops resilient to disease and environmental challenges, docile cows that yield more milk or meat, large-breasted poultry and cute dogs.

A long history of insects working for people

Insect domestication is also far from new. People have reared silkworms (Bombyx mori) to produce silk for over 5,000 years. But selective breeding and isolation from wild relatives have led to their inability to fly, dependence on one food source and need for assistance to reproduce. As a result, silkworms are wholly reliant on humans for survival, and the original species doesn’t exist anymore.

A white moth sitting on a white cocoon on top of a leaf
Silk moths have lost their ability to fly and are completely dependent on humans for survival.
baobao ou/Moment Open via Getty Images

Similarly, people have maintained colonies of the western honeybee (Apis mellifera) for pollination and honey production for centuries. But bees are at risk due to colony collapse disorder, a phenomenon where worker bees disappear from seemingly healthy hives. The causes of colony collapse disorder are unknown; researchers are investigating disease and pesticides as possible factors.

Now the insect agriculture industry has set its sights on domesticating some other insects as a source of sustainably farmed protein for other animals or people.

Insects such as the black soldier fly (Hermetia illucens) and the mealworm (Tenebrio molitor) can grow on existing organic waste streams. Rearing them on organic farm and food waste circularizes the agricultural system and reduces the environmental footprint of growing proteins.

But these insects will need to be grown at scale. Modern agriculture relies on monocultures of species that allow for uniformity in size and synchronized growth and harvest. Domesticating wild insects will be necessary to turn them into farmed animals.

A large number of white larvae in a dry food medium
Black soldier fly larvae feed on a mixture of wheat bran, corn and alfalfa when reared in labs and farms.
Christine Picard

Domestication has an immunity downside

Chickens today grow faster and bigger than ever. But factory-farmed animals are genetically very homogeneous. Moreover, people take care of everything for these domesticated animals. They have easy access to food and are given antibiotics and vaccines for their health and safety.

Consequently, industrially-farmed chickens have lost a lot of their immune abilities. Building these strong disease-fighting proteins requires a lot of energy. Since their spotless, controlled environments protect them, those immune genes are just not needed. The energy their bodies would typically use to protect themselves can instead be used to grow bigger.

In the wild, individuals with faulty immune genes would likely be killed by pathogens, quickly wiping these bad genes out from the population. But in a domesticated environment, such individuals can survive and pass on potentially terrible genes.

The H5N1 bird flu provides a recent example of what can go wrong when a homogeneous population of domesticated animals encounters a dangerous pathogen. When disease broke out, the poor immune systems of domesticated chickens cracked under the pressure. The disease can spread quickly through large facilities, and eventually all chickens there must be euthanized.

Hundreds of brown chickens with red crowns being reared in an indoor facility
Industrially-farmed chickens are genetically homogenous and have lost much of their immune defenses.
pidjoe/E+ via Getty Images

Domestication and the risks of monoculture

Weak immune systems aren’t the only reason the bird flu spread like it did.

Domestication often involves growing large numbers of a single species in small concentrated areas, referred to as a monoculture. All the individuals in a monoculture are roughly the same, both physically and in their genes, so they all have the same susceptibilities.

Banana cultivars are one example. Banana plants grown in the early 1900s were all descendants of a single clone, named Gros Michel. But when the deadly Panama disease fungus swept through, the plants had no defenses and the cultivar was decimated.

Banana growers turned to the Cavendish variety, grown in the largest banana farms today. The banana industry remains vulnerable to the same kind of risk that took down Gros Michel. A new fungal strain is on the rise, and scientists are rushing to head off a global Cavendish banana collapse.

Lessons about weaknesses that come with domestication are important to the relatively new industry advancing insects as the future of sustainable protein production and organic waste recycling.

How genomics can help correct course

Modern genomics can give insect agriculture a new approach to quality control. Technological tools can help researchers learn how an organism’s genes relate to its physical traits. With this knowledge, scientists can help organisms undergoing domestication bypass potential downsides of the process.

For instance, scientists combined data from hundreds of different domesticated tomato genomes, as well as their wild counterparts. They discovered something you’ve probably experienced – while selecting for longer shelf life, tomato flavor genes were unintentionally bred out.

A similar approach of screening genomes has allowed scientists to discover the combination of genes that enhances milk production in dairy cows. Farmers can intentionally breed individuals with the right combinations of milk-producing genes while keeping an eye on what other genes the animals have or lack. This process ensures that breeders don’t lose valuable traits, such as robust immune systems or high fertility rates, while selecting for economically valuable traits during domestication.

Insect breeders can take advantage of these genetic tools from the outset. Tracking an animal population’s genetic markers is like monitoring patients’ vital signs in the hospital. Insect breeders can look at genes to assess colony health and the need for interventions. With regular genetic monitoring of the farmed population, if they begin to see individuals with markers for some “bad” genes, they can intervene right away, instead of waiting for a disaster.

Mechanisms to remedy an emerging disaster include bringing in a new brood from the wild or another colony whose genes can refresh the domesticated population’s inbred and homogeneous genome. Additionally, researchers could use gene-editing techniques such as CRISPR-Cas9 to replicate healthy and productive combinations of genes in a whole new generation of domesticated insects.

Genomics-assisted breeding is a supplement to standard practices and not a replacement. It can help breeders see which traits are at risk, which ones are evolving, and where natural reservoirs of genetic diversity might be found. It allows breeders to make more informed decisions, identify genetic problems and be proactive rather than reactive.

By harnessing the power of genomics, the insect agriculture industry can avoid setting itself up for an accidental future collapse while continuing to make inroads on sustainable protein production and circularizing the agricultural ecosystem.The Conversation

Christine Picard, Professor of Biology, Indiana University and Hector Rosche-Flores, Ph.D. Student in Biology, Indiana University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Genomics can help insect farmers avoid pitfalls of domestication appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The content presents a factual, science-based discussion on insect domestication and sustainable agricultural practices without promoting a specific political agenda. It focuses on the benefits and risks of domestication and biotechnology, highlighting both challenges and technological solutions in a balanced manner. The article underscores environmental sustainability and advances in genomics while maintaining an objective tone, characteristic of centrist perspectives that weigh multiple facets pragmatically.

Continue Reading

Trending