Connect with us

The Conversation

Machines can’t always take the heat − two engineers explain the physics behind how heat waves threaten everything from cars to computers

Published

on

Machines can’t always take the heat − two engineers explain the physics behind how heat waves threaten everything from cars to computers

Extreme heat can affect how well machines function, and the fact that many machines give off their own heat doesn’t help.
AP Photo/Abdeljalil Bounhar

Srinivas Garimella, Georgia Institute of Technology and Matthew T. Hughes, Massachusetts Institute of Technology (MIT)

Not only people need to stay cool, especially in a summer of record-breaking heat waves. Many machines, including cellphones, data centers, cars and airplanes, become less efficient and degrade more quickly in extreme heat. Machines generate their own heat, too, which can make hot temperatures around them even hotter.

We are engineering researchers who study how machines manage heat and ways to effectively recover and reuse heat that is otherwise wasted. There are several ways extreme heat affects machines.

No machine is perfectly efficient – all machines face some internal friction during operation. This friction causes machines to dissipate some heat, so the hotter it is outside, the hotter the machine will be.

Cellphones and similar devices with lithium ion batteries stop working as well when operating in climates above 95 degrees Farenheit (35 degrees Celsius) – this is to avoid overheating and increased stress on the electronics.

Cooling designs that use innovative phase-changing fluids can help keep machines cool, but in most cases heat is still ultimately dissipated into the air. So, the hotter the air, the harder it is to keep a machine cool enough to function efficiently.

Plus, the closer together machines are, the more dissipated heat there will be in the surrounding area.

Deforming materials

Higher temperatures, either from the weather or the excess heat radiated from machinery, can cause materials in machinery to deform. To understand this, consider what temperature means at the molecular level.

At the molecular scale, temperature is a measure of how much molecules are vibrating. So the hotter it is, the more the molecules that make up everything from the air to the ground to materials in machinery vibrate.

YouTube video
When metal is heated, the molecules in it vibrate faster and the space between them moves farther apart. This leads the metal to expand.

As the temperature increases and the molecules vibrate more, the average space between them grows, causing most materials to expand as they heat up. Roads are one place to see this – hot concrete expands, gets constricted and eventually cracks. This phenomenon can happen to machinery, too, and thermal stresses are just the beginning of the problem.

A close-up of a street with several cracks running through the asphalt and a white paint stripe.
Streets crack under heat because higher temperatures create more space between vibrating molecules, causing the material to expand and deform.
Priscila Zambotto/Moment via Getty Images

Travel delays and safety risks

High temperatures can also change the way oils in your car’s engine behave, leading to potential engine failures. For example, if a heat wave makes it 30 degrees F (16.7 degrees C) hotter than normal, the viscosity – or thickness – of typical car engine oils can change by a factor of three.

Fluids like engine oils become thinner as they heat up, so if it gets too hot, the oil may not be thick enough to properly lubricate and protect engine parts from increased wear and tear.

Additionally, a hot day will cause the air inside your tires to expand and increases the tire pressure, which could increase wear and the risk of skidding.

Airplanes are also not designed to take off at extreme temperatures. As it gets hotter outside, air starts to expand and takes up more space than before, making it thinner or less dense. This reduction in air density decreases the amount of weight the plane can support during flight, which can cause significant travel delays or flight cancellations.

Battery degradation

In general, the electronics contained in devices like cellphones, personal computers and data centers consist of many kinds of materials that all respond differently to temperature changes. These materials are all located next to each other in tight spaces. So as the temperature increases, different kinds of materials deform differently, potentially leading to premature wear and failure.

Lithium ion batteries in cars and general electronics degrade faster at higher operating temperatures. This is because higher temperatures increase the rate of reactions within the battery, including corrosion reactions that deplete the lithium in the battery. This process wears down its storage capacity. Recent research shows that electric vehicles can lose about 20% of their range when exposed to sustained 90-degree Farenheit weather.

Data centers, which are buildings full of servers that store data, dissipate significant amounts of heat to keep their components cool. On very hot days, fans must work harder to ensure chips do not overheat. In some cases, powerful fans are not enough to cool the electronics.

A white room filled with large black data servers, which look like lockers.
Data centers, which store large quantities of data, can overheat and require large-scale cooling − which adds to their environmental footprint.
AP Photo/Julie Carr Smyth

To keep the centers cool, incoming dry air from the outside is often first sent through a moist pad. The water from the pad evaporates into the air and absorbs heat, which cools the air. This technique, called evaporative cooling, is usually an economical and effective way to keep chips at a reasonable operating temperature.

However, evaporative cooling can require a significant amount of water. This issue is problematic in regions where water is scarce. Water for cooling can add to the already intense resource footprint associated with data centers.

Struggling air conditioners

Air conditioners struggle to perform effectively as it gets hotter outside – just when they’re needed the most. On hot days, air conditioner compressors have to work harder to send the heat from homes outside, which in turn disproportionally increases electricity consumption and overall electricity demand.

An apartment building wall with closed windows, an AC unit in each.
Heat waves can stress air conditioners, which are already working hard to dissipate heat.
AP Photo/Paul White

For example, in Texas, every increase of 1.8 degrees F (1 degree C) creates a rise of about 4% in electricity demand.

Heat leads to a staggering 50% increase in electricity demand during the summer in hotter countries, posing serious threats of electricity shortages or blackouts, coupled with higher greenhouse gas emissions.

How to prevent heat damage

Heat waves and warming temperatures around the globe pose significant short- and long-term problems for people and machines alike. Fortunately, there are things you can do to minimize the damage.

First, ensure that your machines are kept in an air-conditioned, well-insulated space or out of direct sunlight.

Second, consider using high-energy devices like air conditioners or charging your electric vehicle during off-peak hours when fewer people are using electricity. This can help avoid local electricity shortages.

Reusing heat

Scientists and engineers are developing ways to use and recycle the vast amounts of heat dissipated from machines. One simple example is using the waste heat from data centers to heat water.

Waste heat could also drive other kinds of air-conditioning systems, such as absorption chillers, which can actually use heat as energy to support coolers through a series of chemical- and heat-transferring processes.

In either case, the energy needed to heat or cool something comes from heat that is otherwise wasted. In fact, waste heat from power plants could hypothetically support 27% of residential air-conditioning needs, which would reduce overall energy consumption and carbon emissions.

Extreme heat can affect every aspect of modern life, and heat waves aren’t going away in the coming years. However, there are opportunities to harness extreme heat and make it work for us.The Conversation

Srinivas Garimella, Professor of Mechanical Engineering, Georgia Institute of Technology and Matthew T. Hughes, Postdoctoral Associate, Massachusetts Institute of Technology (MIT)

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

AI is giving a boost to efforts to monitor health via radar

Published

on

theconversation.com – Chandler Bauder, Electronics Engineer, U.S. Naval Research Laboratory – 2025-04-30 07:48:00

AI-powered radar could enable contactless health monitoring in the home.
Chandler Bauder

Chandler Bauder, U.S. Naval Research Laboratory and Aly Fathy, University of Tennessee

If you wanted to check someone’s pulse from across the room, for example to remotely monitor an elderly relative, how could you do it? You might think it’s impossible, because common health-monitoring devices such as fingertip pulse oximeters and smartwatches have to be in contact with the body.

However, researchers are developing technologies that can monitor a person’s vital signs at a distance. One of those technologies is radar.

We are electrical engineers who study radar systems. We have combined advances in radar technology and artificial intelligence to reliably monitor breathing and heart rate without contacting the body.

Noncontact health monitoring has the potential to be more comfortable and easier to use than traditional methods, particularly for people looking to monitor their vital signs at home.

How radar works

Radar is commonly known for measuring the speed of cars, making weather forecasts and detecting obstacles at sea and in the air. It works by sending out electromagnetic waves that travel at the speed of light, waiting for them to bounce off objects in their path, and sensing them when they return to the device.

Radar can tell how far away things are, how fast they’re moving, and even their shape by analyzing the properties of the reflected waves.

Radar can also be used to monitor vital signs such as breathing and heart rate. Each breath or heartbeat causes your chest to move ever so slightly – movement that’s hard for people to see or feel. However, today’s radars are sensitive enough to detect these tiny movements, even from across a room.

Advantages of radar

There are other technologies that can be used to measure health remotely. Camera-based techniques can use infrared light to monitor changes in the surface of the skin in the same manner as pulse oximeters, revealing information about your heart’s activity. Computer vision systems can also monitor breathing and other activities, such as sleep, and they can detect when someone falls.

However, cameras often fail in cases where the body is obstructed by blankets or clothes, or when lighting is inadequate. There are also concerns that different skin tones reflect infrared light differently, causing inaccurate readings for people with darker skin. Additionally, depending on high-resolution cameras for long-term health monitoring brings up serious concerns about patient privacy.

side-by-side images, one of a person and the other a verticle series of nested blobs of color
Radar sees the world in terms of how strongly objects in its view reflect the transmitted signals. The resolution of images it can generate are much lower than images cameras produce.
Chandler Bauder

Radar, on the other hand, solves many of these problems. The wavelengths of the transmitted waves are much longer than those of visible or infrared light, allowing the waves to pass through blankets, clothing and even walls. The measurements aren’t affected by lighting or skin tone, making them more reliable in different conditions.

Radar imagery is also extremely low resolution – think old Game Boy graphics versus a modern 4K TV – so it doesn’t capture enough detail to be used to identify someone, but it can still monitor important activities. While it does project energy, the amount does not pose a health hazard. The health-monitoring radars operate at frequencies and power levels similar to the phone in your pocket.

Radar + AI

Radar is powerful, but it has a big challenge: It picks up everything that moves. Since it can detect tiny chest movements from the heart beating, it also picks up larger movements from the head, limbs or other people nearby. This makes it difficult for traditional processing techniques to extract vital signs clearly.

To address this problem we created a kind of “brain” to make the radar smarter. This brain, which we named mm-MuRe, is a neural network – a type of artificial intelligence – that learns directly from raw radar signals and estimates chest movements. This approach is called end-to-end learning. It means that, unlike other radar plus AI techniques, the network figures out on its own how to ignore the noise and focus only on the important signals.

a diagram with two cartoon representations of people on one side, a brain on the other and vertical curved lines in betwenn
In our study, we used AI to transform raw, unprocessed radar signals into vital signs waveforms of one or two people.
Chandler Bauder

We found that this AI enhancement not only gives more accurate results, it also works faster than traditional methods. It handles multiple people at once, for example an elderly couple, and adapts to new situations, even those it didn’t see during training – such as when people are sitting at different heights, riding in a car or standing close together.

Implications for health care

Reliable remote health monitoring using radar and AI could be a major boon for health care. With no need to touch the patient’s skin, risks of rashes, contamination and discomfort could be greatly reduced. It’s especially helpful in long-term care, where reducing wires and devices can make life significantly easier for patients and caregivers.

Imagine a nursing home where radar quietly watches over residents, alerting caregivers immediately if someone has breathing trouble, falls or needs help. It can be implemented as a home system that checks your breathing while you sleep – no wearables required. Doctors could even use radar to remotely monitor patients recovering from surgery or illness.

This technology is moving quickly toward real-world use. In the future, checking your health could be as simple as walking into a room, with invisible waves and smart AI working silently to take your vital signs.The Conversation

Chandler Bauder, Electronics Engineer, U.S. Naval Research Laboratory and Aly Fathy, Professor of Electrical Engineering, University of Tennessee

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post AI is giving a boost to efforts to monitor health via radar appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The article is focused on a scientific and technological development related to health monitoring using radar and artificial intelligence. It provides an overview of the research process, technical details, and potential health care applications without expressing a clear ideological stance. The tone remains neutral, emphasizing the technical capabilities and benefits of the technology, particularly in long-term care and home health monitoring. While it does mention potential privacy concerns with other methods like cameras, it does so without taking a political position, focusing instead on the advantages of radar. The content adheres to factual reporting and avoids overt bias or advocacy, presenting the information in a straightforward and informative manner.

Continue Reading

The Conversation

Forensics tool ‘reanimates’ the ‘brains’ of AIs that fail in order to understand what went wrong

Published

on

theconversation.com – David Oygenblik, Ph.D. Student in Electrical and Computer Engineering, Georgia Institute of Technology – 2025-04-30 07:47:00

Tesla crashes are only the most glaring of AI failures.
South Jordan Police Department via APPEAR

David Oygenblik, Georgia Institute of Technology and Brendan Saltaformaggio, Georgia Institute of Technology

From drones delivering medical supplies to digital assistants performing everyday tasks, AI-powered systems are becoming increasingly embedded in everyday life. The creators of these innovations promise transformative benefits. For some people, mainstream applications such as ChatGPT and Claude can seem like magic. But these systems are not magical, nor are they foolproof – they can and do regularly fail to work as intended.

AI systems can malfunction due to technical design flaws or biased training data. They can also suffer from vulnerabilities in their code, which can be exploited by malicious hackers. Isolating the cause of an AI failure is imperative for fixing the system.

But AI systems are typically opaque, even to their creators. The challenge is how to investigate AI systems after they fail or fall victim to attack. There are techniques for inspecting AI systems, but they require access to the AI system’s internal data. This access is not guaranteed, especially to forensic investigators called in to determine the cause of a proprietary AI system failure, making investigation impossible.

We are computer scientists who study digital forensics. Our team at the Georgia Institute of Technology has built a system, AI Psychiatry, or AIP, that can recreate the scenario in which an AI failed in order to determine what went wrong. The system addresses the challenges of AI forensics by recovering and “reanimating” a suspect AI model so it can be systematically tested.

Uncertainty of AI

Imagine a self-driving car veers off the road for no easily discernible reason and then crashes. Logs and sensor data might suggest that a faulty camera caused the AI to misinterpret a road sign as a command to swerve. After a mission-critical failure such as an autonomous vehicle crash, investigators need to determine exactly what caused the error.

Was the crash triggered by a malicious attack on the AI? In this hypothetical case, the camera’s faultiness could be the result of a security vulnerability or bug in its software that was exploited by a hacker. If investigators find such a vulnerability, they have to determine whether that caused the crash. But making that determination is no small feat.

Although there are forensic methods for recovering some evidence from failures of drones, autonomous vehicles and other so-called cyber-physical systems, none can capture the clues required to fully investigate the AI in that system. Advanced AIs can even update their decision-making – and consequently the clues – continuously, making it impossible to investigate the most up-to-date models with existing methods.

YouTube video
Researchers are working on making AI systems more transparent, but unless and until those efforts transform the field, there will be a need for forensics tools to at least understand AI failures.

Pathology for AI

AI Psychiatry applies a series of forensic algorithms to isolate the data behind the AI system’s decision-making. These pieces are then reassembled into a functional model that performs identically to the original model. Investigators can “reanimate” the AI in a controlled environment and test it with malicious inputs to see whether it exhibits harmful or hidden behaviors.

AI Psychiatry takes in as input a memory image, a snapshot of the bits and bytes loaded when the AI was operational. The memory image at the time of the crash in the autonomous vehicle scenario holds crucial clues about the internal state and decision-making processes of the AI controlling the vehicle. With AI Psychiatry, investigators can now lift the exact AI model from memory, dissect its bits and bytes, and load the model into a secure environment for testing.

Our team tested AI Psychiatry on 30 AI models, 24 of which were intentionally “backdoored” to produce incorrect outcomes under specific triggers. The system was successfully able to recover, rehost and test every model, including models commonly used in real-world scenarios such as street sign recognition in autonomous vehicles.

Thus far, our tests suggest that AI Psychiatry can effectively solve the digital mystery behind a failure such as an autonomous car crash that previously would have left more questions than answers. And if it does not find a vulnerability in the car’s AI system, AI Psychiatry allows investigators to rule out the AI and look for other causes such as a faulty camera.

Not just for autonomous vehicles

AI Psychiatry’s main algorithm is generic: It focuses on the universal components that all AI models must have to make decisions. This makes our approach readily extendable to any AI models that use popular AI development frameworks. Anyone working to investigate a possible AI failure can use our system to assess a model without prior knowledge of its exact architecture.

Whether the AI is a bot that makes product recommendations or a system that guides autonomous drone fleets, AI Psychiatry can recover and rehost the AI for analysis. AI Psychiatry is entirely open source for any investigator to use.

AI Psychiatry can also serve as a valuable tool for conducting audits on AI systems before problems arise. With government agencies from law enforcement to child protective services integrating AI systems into their workflows, AI audits are becoming an increasingly common oversight requirement at the state level. With a tool like AI Psychiatry in hand, auditors can apply a consistent forensic methodology across diverse AI platforms and deployments.

In the long run, this will pay meaningful dividends both for the creators of AI systems and everyone affected by the tasks they perform.The Conversation

David Oygenblik, Ph.D. Student in Electrical and Computer Engineering, Georgia Institute of Technology and Brendan Saltaformaggio, Associate Professor of Cybersecurity and Privacy, and Electrical and Computer Engineering, Georgia Institute of Technology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Forensics tool ‘reanimates’ the ‘brains’ of AIs that fail in order to understand what went wrong appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The article focuses on the development of a forensic tool, AI Psychiatry, designed to investigate the failure of AI systems. It provides technical insights into how this tool can help investigate and address AI failures, particularly in autonomous vehicles, without promoting any ideological stance. The content is centered on technological advancements and their practical applications, with an emphasis on problem-solving and transparency in AI systems. The tone is neutral, focusing on factual reporting about AI forensics and the technical capabilities of the system. There is no discernible political bias in the article, as it largely sticks to technical and academic subjects without introducing political viewpoints.

Continue Reading

The Conversation

Young bats learn to be discriminating when listening for their next meal

Published

on

theconversation.com – Logan S. James, Research Associate in Animal Behavior, The University of Texas at Austin – 2025-04-29 18:07:00

A frog-eating bat approaches a túngara frog, one of its preferred foods.
Grant Maslowski

Logan S. James, The University of Texas at Austin; Rachel Page, Smithsonian Institution, and Ximena Bernal, Purdue University

It is late at night, and we are silently watching a bat in a roost through a night-vision camera. From a nearby speaker comes a long, rattling trill.

Cane toad’s rattling trill call.

The bat briefly perks up and wiggles its ears as it listens to the sound before dropping its head back down, uninterested.

Next from the speaker comes a higher-pitched “whine” followed by a “chuck.”

Túngara frog’s ‘whine chuck’ call.

The bat vigorously shakes its ears and then spreads its wings as it launches from the roost and dives down to attack the speaker.

Bats show tremendous variation in the foods they eat to survive. Some species specialize on fruits, others on insects, others on flower nectar. There are even species that catch fish with their feet.

Bat eating frog
The calls male frogs use to attract mates also attract eavesdropping predators. Here, a frog-eating bat consumes an unlucky male túngara frog.
Marcos Guerra, Smithsonian Tropical Research Institute

At the Smithsonian Tropical Research Institute in Panama, we’ve been studying one species, the fringe-lipped bat (Trachops cirrhosus), for decades. This bat is a carnivore that specializes in feeding on frogs.

Male frogs from many species call to attract female frogs. Frog-eating bats eavesdrop on those calls to find their next meal. But how do the bats come to associate sounds and prey?

We were interested in understanding how predators that eavesdrop on their prey acquire the ability to discriminate between tasty and dangerous meals. We combined our expertise on animal behavior, bat cognition and frog communication to investigate.

How do bats know the sound of a tasty meal?

There are nearly 8,000 frog and toad species in the world, and each one has a unique call. For instance, the first rattling call that we played from our speaker came from a large and toxic cane toad. The second “whine chuck” came from the túngara frog, a preferred prey species for these bats. Just as herpetologists can tell a frog species by its call, frog-eating bats can use these calls to identify the best meal.

Over the years, our research team has learned a great deal from frog-eating bats about how sound and echolocation are used to find prey, as well as the role of learning and memory in foraging success. In our newly published study, we focused on how associations between the sounds a bat hears and the prey quality it expects arise within the lifespan of an individual bat.

Bat capturing frog from a pond
Adult bats like the one pictured have extensive acoustic repertoires and remember specific frog calls year after year. Young bats must learn which calls to respond to – and, critically, which to ignore – over time through experience.
Grant Maslowski

We considered whether the associations between sound and a delicious meal are an evolved specialty that bats are born with. But this possibility seemed unlikely because the bat species we study has a large geographic distribution across Central and South America, and the species of frogs found across this range vary tremendously.

Instead, we hypothesized that bats learn to associate different sounds with food as they grow up. But we had to test this idea.

First, we and our collaborators spent time in the forest and at ponds to record the mating calls from 15 of the most common frog and toad species in our study area in Panama.

Researcher untangles a bat from a finely woven mistnet at night.
Rachel Page, one of the lead authors on the study, takes a bat out of a mist net in Panama.
Jorge Alemán, Smithsonian Tropical Research Institute

Then, we set up mist nets along streams in Soberanía National Park to capture wild bats for the study.

Frog call, bat response

For the testing, each bat was housed individually in a large, outdoor flight chamber. From a speaker on the ground in the center, we played calls from one frog species on loop for 30 seconds and measured the behavior of the bat, which was hanging from a cloth roost. As we expected, adult bats were generally uninterested in the sounds of species that were unpalatable, such as those with toxins or those that are too large for the bat to carry.

But it was a different story for young bats. Juveniles responded with significantly more predatory behaviors in response to the calls of toxic toads compared with the adults. They also responded more weakly than adults to the sounds of túngara frogs, a palatable, abundant prey that adult bats prefer.

Thus it seems that juvenile bats must learn the associations between sounds and food over the course of their lives. As they grow up, we believe they learn to ignore the calls of frogs that aren’t worth the trouble and zero in on the calls of frogs that will be a good meal.

To better understand how sounds drive prey associations, we measured the acoustic properties of the different calls. We found that some of the most noticeable features of the calls correlated with body size: Larger frogs produce lower-frequency calls – that is, their voices are deeper. Both the adult and juvenile bats responded more strongly to larger species, which would provide larger meals.

However, there was a clear exception in the responses of adults, where the toxic toads and very large frogs elicited much weaker responses than expected for their body size. This finding led us to hypothesize that bats have early biases to pay attention to sounds associated with larger body size. Then they must learn through experience that meal quality is not only about size. Some large meals are toxic or impossible to carry, making them unpalatable.

YouTube video
Once the researchers have studied each frog-eating bat for a few days, they safely release it where it was originally captured. Footage courtesy of Léna de Framond-Bénard and Eric de Framond-Bénard, compiled by Caroline Rogan.

After the bats spent a few days with us, we released each one back at its original site of capture. The bats departed, taking with them a small RFID tag, just like the ones pet owners use to identify their dogs and cats, in case we meet again as part of a future study.

As the bats go on with their lives in the wild, we continue our quest to deepen our understanding of the subtleties of information discrimination. How do individuals weed through information overload to make choices that make sense and benefit them? That’s the same challenge we all face each day.The Conversation

Logan S. James, Research Associate in Animal Behavior, The University of Texas at Austin; Rachel Page, Staff Scientist, Smithsonian Tropical Research Institute, Smithsonian Institution, and Ximena Bernal, Professor of Biological Sciences, Purdue University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Young bats learn to be discriminating when listening for their next meal appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The content of this article is a scientific and factual exploration of bat behavior, specifically focusing on the learning processes of young bats in identifying suitable prey based on sound cues. The language used is neutral, without any ideological stance or persuasive elements aimed at pushing a particular viewpoint. The piece primarily conveys research findings and observations made by scientists. The framing is academic and informative, with no evident political, social, or controversial implications influencing the tone. It adheres to neutral, factual reporting and does not present any discernible bias in terms of ideology or political orientation.

Continue Reading

Trending