Connect with us

The Conversation

Lighting a fire using friction requires an understanding of some physics principles − but there are ways to make the process easier

Published

on

Lighting a fire using friction requires an understanding of some physics principles − but there are ways to make the process easier

Humans have been making fire by friction for centuries, but it’s not easy.
Cyndi Monaghan/Moment via Getty Images

Bradley Duncan, University of Dayton

Humans have been making fire using friction for thousands of years, with evidence of its use found in archaeological records across different cultures worldwide.

Fire by friction is a testament to human ingenuity, contributing to the development of early technology and a later understanding of physics, chemistry and heat transfer.

Making fire, one of the key discoveries in human history, has played a pivotal role in human evolution, providing warmth, light, protection from predators, a means to cook and the ability to migrate into more hostile climates.

I’m an engineering professor, avid outdoorsman and Minisino Firecrafter who’s been studying and practicing fire by friction for many years. It’s a great way to explore key science concepts while engaging in a practice that humans have been performing for millennia.

Ember, flame, fire

Fire by friction relies on the conversion of mechanical energy into thermal energy through friction. Friction is the force of resistance between two surfaces when they slide, or attempt to slide, past one another.

There are many ways to create fire by friction, but the most common and easiest to learn uses a bow drill set.

A bow drill set consists of a thin spindle, a hearth board, a lightly curved bow, to which a bow cord is attached, and a “thunderhead” or bearing block, which is a stone or block of hard wood with a natural or carved divot used to press down on the top of the spindle.

A set of wood tools, including a long stick with a cord attached, a small stick, a piece of wood with grooves carved into it, a pile of dried grass, and a small, triangle-shaped stone.
A bow drill set, made entirely from materials found outdoors. From bottom left to top right is a tinder bundle, made from the inner bark of a cottonwood tree and some red cedar bark, a stone thunderhead, a honeysuckle bow with a cord made from dogbane fibers, a goldenrod spindle and a white pine hearth board.
Bradley Duncan

First, the firemaker wraps the bow cord tightly around the spindle and uses it to rapidly spin the spindle against the hearth board, while simultaneously pressing down with the thunderhead.

Similar to how your hands become warmer when you vigorously rub them together, friction causes a rapid increase in temperature where the spindle meets the hearth board. This drives away any residual moisture. The wood also heats up mostly in the absence of oxygen, resulting in charring, a chemical process from incomplete combustion. What’s left over is mostly carbon.

The friction of the spindle against the hearth board creates heat – kind of like how your hands warm up when you rub them together.

As the spindle continues to spin, it grinds away the charred wood to form a small pile of charcoal dust. As the dust pile grows, it will eventually coalesce and ignite to form an ember.

The ember’s ignition point depends on a variety of factors, including the type of wood, the temperature and the humidity. Experiments often yield ignition temperatures in the range of 650-800 degrees Farenheit (340-430 degrees Celsius), with the most reliable estimates on the order of 700 degrees F (370 degrees C). Getting to this temperature is essential to create an ember and start the fire.

After an ember forms, the firemaker then transfers it to a tinder bundle made of dry leaves or grass, dead tree bark or other fibrous organic materials. The firemaker blows into the tinder bundle to further raise the temperature by increasing oxygen flow.

Eventually, the tinder bursts into flame, after which the firemaker can kindle it into a larger fire. Young fires are usually fragile – if the firemaker doesn’t provide them with enough fuel, air flow and protection from the wind and rain, they can go out.

The smoke you see rising from a fire results from incomplete combustion.

Work smarter, not harder

Understanding the physics of fire by friction and the different variables involved can make a big difference and help the fire start more quickly with less effort.

First, keep it small. Firemakers should make bow drill sets carved from standing dead, dry tree limbs maybe an inch or so (2.5 centimeters) in diameter. Optimal spindles have diameters between three-eighths of an inch and a half-inch (1-1.25 cm).

How fast the friction force generates heat is directly proportional to how fast the firemaker bows, on average, and is independent of the diameter of the spindle. So, the faster you move the bow, the more heat you will create, regardless of the spindle’s size.

But because they have smaller cross-sectional areas, thin spindles increase the heat density at the spindle-hearth board interface, which is where the ember forms and ignites. By concentrating the heat in a smaller area at this interface, thin spindles reduce the time and effort required to form and ignite an ember.

Dry, unpigmented, medium-density woods – elm, poplar and cottonwood are some examples – will work well for the spindle and the hearth board. I’ve tested lots of wood types and found that, with a few exceptions, wood hardness mostly doesn’t matter.

I’ve also found that mature wildflower stalks – harvested fresh and allowed to dry out – work well as spindles. Tall, woody wildflowers like goldenrod, ironweed, teasel, mullein and the like can produce embers in seconds. If time permits, you can even make a bow cord with natural fibers extracted from flax, dogbane or nettle plants commonly found in the woods.

A yellow goldenrod flower, with green leaves.
The thick, woody stalks from wildflowers like goldenrod can work as effective spindles.
Solidago/E+ via Getty Images

The fire-making process

The key variables the firemaker can control during the bowing process are the speed at which they’re moving the bow and how much pressure they’re applying to the spindle via the thunderhead. Start by seating the spindle tip into a notched divot carved into the hearth board. Then move the bow slowly until you get your balance.

Initially press down with the thunderhead just hard enough for pyrolysis to begin. Pyrolysis happens when heat causes organic material to decompose without oxygen. You’ll know when pyrolysis starts because you’ll see smoke rising from the spindle-hearth board interface.

Then, begin to increase your bow speed until you are bowing as rapidly as you can sustain for a minute or so. Don’t hold your breath, and use bow strokes as long as you can manage without compromising bow speed. The time it takes to form an ember decreases the faster you bow, though the length of your stroke doesn’t matter.

As speed increases, begin to increase the pressure you’re putting on the spindle, stopping when the increased friction begins to affect your ability to sustain a rapid bow speed. With good materials you’ll likely have a nice ember in well under a minute.

While modern technology has largely replaced primitive methods, fire by friction continues to be a source of fascination and a testament to human ingenuity. Understanding this process not only enriches humanity’s connection to the ancient past, but it also underscores how physics comes into play throughout daily life.The Conversation

Bradley Duncan, Professor of Electrical and Computer Engineering, University of Dayton

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

The Vera C. Rubin Observatory will help astronomers investigate dark matter, continuing the legacy of its pioneering namesake

Published

on

theconversation.com – Samantha Thompson, Astronomy Curator, National Air and Space Museum, Smithsonian Institution – 2025-06-24 07:35:00


Everything visible in space, including stars and planets, accounts for only about 15% of the universe’s matter; the rest is dark matter, which is invisible but detectable through its gravitational effects. The Vera C. Rubin Observatory, starting its 10-year mission with the largest digital camera ever built, will capture detailed images of billions of galaxies to study dark matter’s role in the universe’s structure. Vera Rubin’s pioneering work in the 1960s revealed stars in galaxies move faster than visible matter predicts, suggesting unseen mass. Her legacy continues as astronomers use data to explore dark matter’s mysteries.

The Rubin Observatory is scheduled to release its first images in 2025.
RubinObs/NOIRLab/SLAC/NSF/DOE/AURA/B. Quint

Samantha Thompson, Smithsonian Institution

Everything in space – from the Earth and Sun to black holes – accounts for just 15% of all matter in the universe. The rest of the cosmos seems to be made of an invisible material astronomers call dark matter.

Astronomers know dark matter exists because its gravity affects other things, such as light. But understanding what dark matter is remains an active area of research.

With the release of its first images this month, the Vera C. Rubin Observatory has begun a 10-year mission to help unravel the mystery of dark matter. The observatory will continue the legacy of its namesake, a trailblazing astronomer who advanced our understanding of the other 85% of the universe.

As a historian of astronomy, I’ve studied how Vera Rubin’s contributions have shaped astrophysics. The observatory’s name is fitting, given that its data will soon provide scientists with a way to build on her work and shed more light on dark matter.

Wide view of the universe

From its vantage point in the Chilean Andes mountains, the Rubin Observatory will document everything visible in the southern sky. Every three nights, the observatory and its 3,200 megapixel camera will make a record of the sky.

This camera, about the size of a small car, is the largest digital camera ever built. Images will capture an area of the sky roughly 45 times the size of the full Moon. With a big camera with a wide field of view, Rubin will produce about five petabytes of data every year. That’s roughly 5,000 years’ worth of MP3 songs.

After weeks, months and years of observations, astronomers will have a time-lapse record revealing anything that explodes, flashes or moves – such as supernovas, variable stars or asteroids. They’ll also have the largest survey of galaxies ever made. These galactic views are key to investigating dark matter.

Galaxies are the key

Deep field images from the Hubble Space Telescope, the James Webb Space Telescope and others have visually revealed the abundance of galaxies in the universe. These images are taken with a long exposure time to collect the most light, so that even very faint objects show up.

Researchers now know that those galaxies aren’t randomly distributed. Gravity and dark matter pull and guide them into a structure that resembles a spider’s web or a tub of bubbles. The Rubin Observatory will expand upon these previous galactic surveys, increasing the precision of the data and capturing billions more galaxies.

In addition to helping structure galaxies throughout the universe, dark matter also distorts the appearance of galaxies through an effect referred to as gravitational lensing.

Light travels through space in a straight line − unless it gets close to something massive. Gravity bends light’s path, which distorts the way we see it. This gravitational lensing effect provides clues that could help astronomers locate dark matter. The stronger the gravity, the bigger the bend in light’s path.

Many galaxies, represented as bright dots, some blurred, against a dark background.
The white galaxies seen here are bound in a cluster. The gravity from the galaxies and the dark matter bends the light from the more distant galaxies, creating contorted and magnified images of them.
NASA, ESA, CSA and STScI

Discovering dark matter

For centuries, astronomers tracked and measured the motion of planets in the solar system. They found that all the planets followed the path predicted by Newton’s laws of motion, except for Uranus. Astronomers and mathematicians reasoned that if Newton’s laws are true, there must be some missing matter – another massive object – out there tugging on Uranus. From this hypothesis, they discovered Neptune, confirming Newton’s laws.

With the ability to see fainter objects in the 1930s, astronomers began tracking the motions of galaxies.

California Institute of Technology astronomer Fritz Zwicky coined the term dark matter in 1933, after observing galaxies in the Coma Cluster. He calculated the mass of the galaxies based on their speeds, which did not match their mass based on the number of stars he observed.

He suspected that the cluster could contain an invisible, missing matter that kept the galaxies from flying apart. But for several decades he lacked enough observational evidence to support his theory.

A woman adjusting a large piece of equipment.
Vera Rubin operates the Carnegie spectrograph at Kitt Peak National Observatory in Tucson.
Carnegie Institution for Science, CC BY

Enter Vera Rubin

In 1965, Vera Rubin became the first women hired onto the scientific staff at the Carnegie Institution’s Department of Terrestrial Magnetism in Washington, D.C.

She worked with Kent Ford, who had built an extremely sensitive spectrograph and was looking to apply it to a scientific research project. Rubin and Ford used the spectrograph to measure how fast stars orbit around the center of their galaxies.

In the solar system, where most of the mass is within the Sun at the center, the closest planet, Mercury, moves faster than the farthest planet, Neptune.

“We had expected that as stars got farther and farther from the center of their galaxy, they would orbit slower and slower,” Rubin said in 1992.

What they found in galaxies surprised them. Stars far from the galaxy’s center were moving just as fast as stars closer in.

“And that really leads to only two possibilities,” Rubin explained. “Either Newton’s laws don’t hold, and physicists and astronomers are woefully afraid of that … (or) stars are responding to the gravitational field of matter which we don’t see.”

Data piled up as Rubin created plot after plot. Her colleagues didn’t doubt her observations, but the interpretation remained a debate. Many people were reluctant to accept that dark matter was necessary to account for the findings in Rubin’s data.

Rubin continued studying galaxies, measuring how fast stars moved within them. She wasn’t interested in investigating dark matter itself, but she carried on with documenting its effects on the motion of galaxies.

A quarter with a woman looking upwards engraved onto it.
A U.S quarter honors Vera Rubin’s contributions to our understanding of dark matter.
United States Mint, CC BY

Vera Rubin’s legacy

Today, more people are aware of Rubin’s observations and contributions to our understanding of dark matter. In 2019, a congressional bill was introduced to rename the former Large Synoptic Survey Telescope to the Vera C. Rubin Observatory. In June 2025, the U.S. Mint released a quarter featuring Vera Rubin.

Rubin continued to accumulate data about the motions of galaxies throughout her career. Others picked up where she left off and have helped advance dark matter research over the past 50 years.

In the 1970s, physicist James Peebles and astronomers Jeremiah Ostriker and Amos Yahil created computer simulations of individual galaxies. They concluded, similarly to Zwicky, that there was not enough visible matter in galaxies to keep them from flying apart.

They suggested that whatever dark matter is − be it cold stars, black holes or some unknown particle − there could be as much as 10 times the amount of dark matter than ordinary matter in galaxies.

Throughout its 10-year run, the Rubin Observatory should give even more researchers the opportunity to add to our understanding of dark matter.The Conversation

Samantha Thompson, Astronomy Curator, National Air and Space Museum, Smithsonian Institution

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post The Vera C. Rubin Observatory will help astronomers investigate dark matter, continuing the legacy of its pioneering namesake appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The content is focused entirely on scientific topics related to astronomy, dark matter, and the legacy of astronomer Vera Rubin without engaging in political rhetoric or ideological framing. Its tone is neutral, educational, and fact-based, presenting information grounded in scientific research and historical context. As such, it does not lean toward any particular political bias but maintains an objective, centrist stance typical of purely scientific communication.

Continue Reading

The Conversation

3 years after abortion rights were overturned, contraception access is at risk

Published

on

theconversation.com – Cynthia H. Chuang, Professor of Medicine and Public Health Sciences, Penn State – 2025-06-23 07:39:00


On June 24, 2022, the U.S. Supreme Court’s Dobbs v. Jackson Women’s Health Organization decision overturned Roe v. Wade, ending federal abortion rights and shifting regulation to states. Since then, many states have imposed severe abortion restrictions, increasing demand for effective contraception like IUDs and sterilization. However, the decision has also led to diminished access to contraception due to abortion clinic closures, decreased healthcare provider availability, and threats to insurance coverage. Efforts to wrongly classify some contraceptives as abortifacients risk limiting coverage under Medicaid and the Affordable Care Act, endangering contraception access amid rising need.

Women living in states that ban or severely restrict abortion may be especially motivated to avoid unintended pregnancy.
Viktoriya Skorikova/Moment via Getty Images

Cynthia H. Chuang, Penn State and Carol S. Weisman, Penn State

On June 24, 2022, the U.S. Supreme Court decision in Dobbs v. Jackson Women’s Health Organization eliminated a nearly 50-year constitutional right to abortion and returned the authority to regulate abortion to the states.

The Dobbs ruling, which overturned Roe v. Wade, has vastly reshaped the national abortion landscape. Three years on, many states have severely restricted access to abortion care. But the decision has also had a less well-recognized outcome: It is increasingly jeopardizing access to contraception.

We are a physician scientist and a sociologist and health services researcher studying women’s health care and policy, including access to contraception. We see a worrisome situation emerging.

Even while the growing limits on abortion in the U.S. heighten the need for effective contraception, family planning providers are less available in many states, and health insurance coverage of some of the most effective types of contraception is at risk.

A growing demand for contraception

Abortion restrictions have proliferated around the country since the Dobbs decision. As of June 2025, 12 states have near-total abortion bans and 10 states ban abortion before 23 or 24 weeks of gestation, which is when a fetus is generally deemed viable. Of the remaining states, 19 restrict abortion after viability and nine states and Washington have no gestational limits.

It’s no surprise that women living in states that ban or severely restrict abortion may be especially motivated to avoid unintended pregnancy. Even planned pregnancies have grown riskier, with health care providers fearing legal repercussions for treating pregnancy-related medical emergencies such as miscarriages. Such concerns may in part explain emerging research that suggests the use of long-acting contraception such as intrauterine devices, or IUDs, and permanent contraception – namely, sterilization – are on the rise.

A national survey conducted in 2024 asked women ages 18 to 49 if they have changed their contraception practices “as a result of the Supreme Court overturning Roe v. Wade.” It found that close to 1 in 5 women began using contraception for the first time, switched to a more effective contraceptive method, received a sterilization procedure or purchased emergency contraception to keep on hand.

The Supreme Court’s decision in Dobbs reshaped the landscape of abortion access across the U.S.

A study in Ohio hospitals found a nearly 16% increase in women choosing long-acting contraception methods or sterilization in the six months after the Dobbs decision, and a 33% jump in men receiving vasectomies. Another study, which looked at both female and male sterilization in academic medical centers across the country, also reported an uptick in sterilization procedures for young adults ages 18 to 30 after the Dobbs decision, through 2023.

A loss of contraception providers

Ironically, banning or severely restricting abortion statewide may also diminish capacity to provide contraception.

To date, there is no compelling evidence that OB-GYN doctors are leaving states with strict abortion laws in significant numbers. One study found that states with severe abortion restrictions saw a 4.2% decrease in such practitioners compared with states without abortion restrictions.

However, the Association of American Medical Colleges reports declining applications to residency training programs located in states that have abortion bans – not just for OB-GYN training programs, but for residency training of all specialties. This drop suggests that doctors may be overall less likely to train in states that restrict medical practice. And given that physicians often stay on to practice in the states where they do their training, it may point to a long-term decline in physicians in those states.

But the most significant drop in contraceptive services likely comes from the closure of abortion clinics in states with the most restrictive abortion policies. That’s because such clinics generally provide a wide range of reproductive services, including contraception. The 12 states with near-total abortion bans had 57 abortion clinics in 2020, all of which were closed as of March 2024. One study reported a 4.1% decline in oral contraceptives dispensed in those states.

Contraception under threat

The Dobbs decision has also encouraged ongoing efforts to incorrectly redefine some of the most effective contraceptives as medications that cause abortion. These efforts target emergency contraceptive pills, known as Plan B over-the-counter and Ella by prescription, as well as certain IUDs. Emergency contraceptive pills are up to 98% effective at preventing pregnancy after unprotected sex, and IUDs are 99% effective.

Neither method terminates a pregnancy, which by definition begins when a fertilized egg implants in the uterus. Instead, emergency contraceptive pills prevent an egg from being released from the ovaries, while IUDs, depending on the type, prevent sperm from fertilizing an egg or prevent an egg from implanting in the uterus.

Conflating contraception and abortion spreads misinformation and causes confusion. People who believe that certain types of contraception cause abortions may be dissuaded from using those methods and rely on less effective methods. What’s more, it may affect health insurance coverage.

Medicaid, which provides health insurance for low-income children and adults, has been required to cover family planning services at no cost to patients since 1972. Since 2012, the Affordable Care Act has required private health insurers to cover certain women’s health preventive services at no cost to patients, including the full-range of contraceptives approved by the Food and Drug Administration.

According to our research, the insurance coverage required by the Affordable Care Act has increased use of IUDs, which can be prohibitively expensive when paid out of pocket. But if IUDs and emergency contraceptive pills were reclassified as interventions that induce abortion, they likely would not be covered by Medicaid or the Affordable Care Act, since neither type of health insurance requires coverage for abortion care. Thus, access to some of the most effective contraceptive methods could be jeopardized at a time when the right to terminate an unintended or nonviable pregnancy has been rolled back in much of the country.

Indeed, Project 2025, the conservative policy agenda that the Trump administration appears to be following, specifically calls for removing Ella from the Affordable Care Act contraception coverage mandate because it is a “potential abortifacient.” And politicians in multiple states have expressed support for the idea of restricting these contraceptive methods, as well as contraception more broadly.

On the third anniversary of the Dobbs decision, it is clear that its ripple effects include threats to contraception. Considering that contraception use is almost universal among women in their reproductive years, in our view these threats should be taken seriously.The Conversation

Cynthia H. Chuang, Professor of Medicine and Public Health Sciences, Penn State and Carol S. Weisman, Distinguished Professor Emerita of Public Health Sciences, Penn State

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post 3 years after abortion rights were overturned, contraception access is at risk appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Center-Left

This article presents a viewpoint consistent with Center-Left perspectives by emphasizing the negative impacts of the Dobbs decision on abortion and contraception access. It highlights concerns about reduced reproductive rights, healthcare provider shortages, and efforts to restrict or redefine contraception, portraying these developments as threats to women’s health. The language frames the Dobbs ruling and related policies critically, focusing on public health consequences and policy setbacks, which aligns with progressive and moderate Democratic-leaning concerns. While it is evidence-based and cites research, the framing and selection of issues suggest a bias toward protecting reproductive rights and opposing restrictive abortion policies.

Continue Reading

The Conversation

Neuropathic pain has no immediate cause – research on a brain receptor may help stop this hard-to-treat condition

Published

on

theconversation.com – Pooja Shree Chettiar, Ph.D. Candidate in Medical Sciences, Texas A&M University – 2025-06-23 07:38:00


Neuropathic pain arises from nervous system dysfunction, causing persistent, unexplained pain and altering brain function, leading to emotional distress. Affecting about 10% of the U.S. population, it creates major health and economic burdens, often treated inadequately. Neuroscientists study molecules reshaping pain perception, focusing on the GluD1 receptor, a protein organizing synapses crucial for pain circuits. GluD1 disrupts in chronic pain, destabilizing synaptic communication and amplifying pain signals. Reactivating GluD1 with cerebellin-1 in mouse studies restored synaptic function and reduced pain without opioid side effects. While early, this research suggests a promising approach to treating neuropathic pain by repairing neural networks rather than masking symptoms.

Neuropathic pain is experienced both physically and emotionally.
Salim Hanzaz/iStock via Getty Images

Pooja Shree Chettiar, Texas A&M University and Siddhesh Sabnis, Texas A&M University

Pain is easy to understand until it isn’t. A stubbed toe or sprained ankle hurts, but it makes sense because the cause is clear and the pain fades as you heal.

But what if the pain didn’t go away? What if even a breeze felt like fire, or your leg burned for no reason at all? When pain lingers without a clear cause, that’s neuropathic pain.

We are neuroscientists who study how pain circuits in the brain and spinal cord change over time. Our work focuses on the molecules that quietly reshape how pain is felt and remembered.

We didn’t fully grasp how different neuropathic pain was from injury-related pain until we began working in a lab studying it. Patients spoke of a phantom pain that haunted them daily – unseen, unexplained and life-altering.

These conversations shifted our focus from symptoms to mechanisms. What causes this ghost pain to persist, and how can we intervene at the molecular level to change it?

More than just physical pain

Neuropathic pain stems from damage to or dysfunction in the nervous system itself. The system that was meant to detect pain becomes the source of it, like a fire alarm going off without a fire. Even a soft touch or breeze can feel unbearable.

Neuropathic pain doesn’t just affect the body – it also alters the brain. Chronic pain of this nature often leads to depression, anxiety, social isolation and a deep sense of helplessness. It can make even the most routine tasks feel unbearable.

About 10% of the U.S. population – tens of millions of people – experience neuropathic pain, and cases are rising as the population ages. Complications from diabetes, cancer treatments or spinal cord injuries can lead to this condition. Despite its prevalence, doctors often overlook neuropathic pain because its underlying biology is poorly understood.

Person lying on side in bed, eyes closed, possibly grimacing
Neuropathic pain can be debilitating.
Kate Wieser/Moment via Getty Images

There’s also an economic cost to neuropathic pain. This condition contributes to billions of dollars in health care spending, missed workdays and lost productivity. In the search for relief, many turn to opioids, a path that, as seen from the opioid epidemic, can carry its own devastating consequences through addiction.

GluD1: A quiet but crucial player

Finding treatments for neuropathic pain requires answering several questions. Why does the nervous system misfire in this way? What exactly causes it to rewire in ways that increase pain sensitivity or create phantom sensations? And most urgently: Is there a way to reset the system?

This is where our lab’s work and the story of a receptor called GluD1 comes in. Short for glutamate delta-1 receptor, this protein doesn’t usually make headlines. Scientists have long considered GluD1 a biochemical curiosity, part of the glutamate receptor family, but not known to function like its relatives that typically transmit electrical signals in the brain.

Instead, GluD1 plays a different role. It helps organize synapses, the junctions where neurons connect. Think of it as a construction foreman: It doesn’t send messages itself, but directs where connections form and how strong they become.

This organizing role is critical in shaping the way neural circuits develop and adapt, especially in regions involved in pain and emotion. Our lab’s research suggests that GluD1 acts as a molecular architect of pain circuits, particularly in conditions like neuropathic pain where those circuits misfire or rewire abnormally. In parts of the nervous system crucial for pain processing like the spinal cord and amygdala, GluD1 may shape how people experience pain physically and emotionally.

Fixing the misfire

Across our work, we found that disruptions to GluD1 activity is linked to persistent pain. Restoring GluD1 activity can reduce pain. The question is, how exactly does GluD1 reshape the pain experience?

In our first study, we discovered that GluD1 doesn’t operate solo. It teams up with a protein called cerebellin-1 to form a structure that maintains constant communication between brain cells. This structure, called a trans-synaptic bridge, can be compared to a strong handshake between two neurons. It makes sure that pain signals are appropriately processed and filtered.

But in chronic pain, the bridge between these proteins becomes unstable and starts to fall apart. The result is chaotic. Like a group chat where everyone is talking at once and nobody can be heard clearly, neurons start to misfire and overreact. This synaptic noise turns up the brain’s pain sensitivity, both physically and emotionally. It suggests that GluD1 isn’t just managing pain signals, but also may be shaping how those signals feel.

What if we could restore that broken connection?

Resembling paint splatter, a round glob of green, yellow and red is superimposed on each other and surrounded by flecks of these same colors
This image highlights the presence of GluD1, in green and yellow, in a neuron of the central amygdala, in red.
Pooja Shree Chettiar and Siddhesh Sabnis/Dravid Lab at Texas A&M University, CC BY-SA

In our second study, we injected mice with cerebellin-1 and saw that it reactivated GluD1 activity, easing their chronic pain without producing any side effects. It helped the pain processing system work again without the sedative effects or disruptions to other nerve signals that are common with opioids. Rather than just numbing the body, reactivating GluD1 activity recalibrated how the brain processes pain.

Of course, this research is still in the early stages, far from clinical trials. But the implications are exciting: GluD1 may offer a way to repair the pain processing network itself, with fewer side effects and less risk of addiction than current treatments.

For millions living with chronic pain, this small, peculiar receptor may open the door to a new kind of relief: one that heals the system, not just masks its symptoms.The Conversation

Pooja Shree Chettiar, Ph.D. Candidate in Medical Sciences, Texas A&M University and Siddhesh Sabnis, Ph.D. Student in Medical Sciences, Texas A&M University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Neuropathic pain has no immediate cause – research on a brain receptor may help stop this hard-to-treat condition appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

This article presents a neutral and factual overview of neuropathic pain and related scientific research. It focuses on explaining medical concepts, recent findings, and potential treatments without expressing any political opinions or ideological stances. The language is technical and objective, aiming to inform rather than persuade or advocate for any political position. The content neither promotes nor criticizes specific policies or political actors, maintaining a clear focus on science and health. Therefore, the article aligns with centrist, unbiased reporting.

Continue Reading

Trending