fbpx
Connect with us

The Conversation

How bird flu virus fragments get into milk sold in stores, and what the spread of H5N1 in cows means for the dairy industry and milk drinkers

Published

on

theconversation.com – Noelia Silva del Rio, Associate Specialist in Cooperative Extension, Production Medicine and Food Safety, of California, Davis – 2024-04-25 14:04:50

Cows typically get over avian flu in a of weeks, but it's an economic blow for farms.

AP Photo/Charlie Litchfield

Noelia Silva del Rio, University of California, Davis; Richard V. Pereira, University of California, Davis; Robert B. Moeller, University of California, Davis; Terry W. Lehenbauer, University of California, Davis, and Todd Cornish, University of California, Davis

The discovery of viral fragments of avian flu virus in milk sold in U.S. stores suggests that the H5N1 virus may be more widespread in U.S. dairy cattle than previously realized.

Advertisement

The Food and Drug Administration was quick to stress on April 24, 2024, that it believes the commercial milk supply is safe. However, highly pathogenic avian influenza virus can make cows sick, and the flu virus's presence in herds in several states and now new federal restrictions on the movement of dairy cows between states are putting economic pressure on farmers.

Five experts in infectious diseases in cattle from the University of California, Davis – Noelia Silva del Rio, Terry Lehenbauer, Richard Pereira, Robert Moeller and Todd Cornish – explain what the test results mean, how bird flu can spread to cattle and the impact on the industry.

What are viral fragments of avian flu, and can they pose risks to people?

It's crucial to understand that the presence of viral fragments of H5N1 doesn't indicate the presence of intact virus particles that could cause disease.

The commercial milk supply maintains safety through two critical measures:

Advertisement
  • First, milk sourced from sick animals is promptly diverted or disposed of, ensuring it does not enter the food chain.

  • Second, all milk at grocery stores is heat treated to reduce pathogen load to safe levels, mainly by pasteurization. Pasteurization has been shown to effectively inactivate H5N1 in eggs, and that occurs at a lower temperature than is used for milk.

The viral fragments were detected using quantitative polymerase chain reaction testing, which is known for its exceptional sensitivity in detecting even trace amounts of viral genetic material. These fragments are only evidence that the virus was present in the milk. They aren't evidence that the virus is biologically active.

To evaluate whether the presence of the viral fragments corresponds to a virus with the capacity to replicate and cause disease, a different testing approach is necessary. Tests such as embryonated egg viability studies allow scientists to assess the virus's ability to replicate by injecting a sample into an embryonated chicken egg. That type of testing is underway.

On April 24, 2024, the FDA said it had found no reason to change its assessment that the U.S. milk supply is safe. The agency does strongly advise against consuming raw milk and products derived from it because of its inherent risks of contamination with harmful pathogens, avian flu viruses.

How does an avian flu virus get into cow's milk?

Currently, cows confirmed to have H5N1 have different symptoms than the typical flu-like symptoms observed in birds.

Advertisement

Abnormal milk and mastitis, an inflammatory response to infection, are common. While there is speculation that other bodily secretions, such as saliva, respiratory fluids, urine or feces, may also harbor the virus, that has yet to be confirmed.

The legs of a cow showing a milking device attached to the udder and tubes for the milk to flow.

Milking equipment can viruses spread.

Loic Venance/AFP via Getty Images

How waterfowl or other birds transmitted H5N1 to cattle is still under investigation. In 2015, an outbreak of highly pathogenic avian influenza in commercial poultry farms reached its peak in April and May, the same time birds migrated north. Birds can shed the virus through their oral, nasal, urine and fecal secretions. So the virus could potentially be transmitted through direct contact, ingesting contaminated feed or water, or inhaling the virus.

Infected dairy cows can shed the virus in milk, and they likely can transmit it to other cows, but that still needs to be proven.

Advertisement

Contagious pathogens that cause mastitis can be transmitted through milking equipment or contaminated milker's gloves. Ongoing research will help determine whether this is also a potential transmission route for H5N1, and if so, what makes the virus thrive on mammary tissue.

If H5N1 is found to be widespread in milk, what risks can that pose for the dairy industry?

For the dairy industry, infection of cattle with H5N1 avian influenza virus creates challenges at two levels.

The overriding concern is always for the safety and healthfulness of milk and dairy products.

Existing and federal regulations and industry practices require sick cows or cows with abnormal milk to be segregated so that their milk does not enter the food supply. Proper pasteurization should kill the virus so that it cannot cause infection.

Advertisement

The American Association of Bovine Practitioners has also developed biosecurity guidelines for H5N1, focusing on key practices. These include minimizing wild birds' contact with cattle and their , managing the movement of cattle between farms, isolating affected animals, avoiding feeding unpasteurized (raw) colostrum or milk to calves and other mammals, and ensuring the use of protective personal equipment for animal caretakers.

The other major concern is for the health of the dairy herd and the people who take care of the dairy cattle. A farm worker who handled dairy cows contracted H5N1 in in March 2024, but such cases are rare.

No vaccines or specific therapies are available for avian influenza infections in dairy cattle. But following good sanitation and biosecurity practices for both people and cows will help to reduce risk of exposure and spread of the avian influenza virus among dairy cattle.

Advertisement

For cows that get the virus, providing supportive care, including fluids and fever reducers as needed, can help them get through the illness, which can also cause loss of appetite and affect their milk production.

Dairy farms facing an outbreak will have economic losses from caring for sick animals and the temporary reduction in milk sales. Approximately 5% to 20% of the animals in the affected herds have become ill, according to early estimates. Affected animals typically recover within 10 to 20 days.

At least 21 states have restricted importing dairy cattle to prevent the virus's spread, and the federal announced it will require that lactating dairy cattle be tested before they can be moved between states starting April 29, 2024. While the overall impact on U.S. milk production is projected to be minor on an annual basis, it could to short-lived supply disruptions.

How worried should people be about avian flu?

The federal government's monitoring and food safety measures, along with pasteurization, provide important safeguards to protect the public from potential exposure to avian influenza virus through the food chain.

Advertisement

Drinking raw milk, however, does represent a risk for exposure to multiple diseases, including H5N1. This is why the FDA and Centers for Disease Control and Prevention strongly recommend drinking only pasteurized milk and dairy products.The Conversation

Noelia Silva del Rio, Associate Specialist in Cooperative Extension, Production Medicine and Food Safety, University of California, Davis; Richard V. Pereira, Associate Professor of Veterinary Medicine and Associate Agronomist, University of California, Davis; Robert B. Moeller, Professor of Veterinary Medicine, University of California, Davis; Terry W. Lehenbauer, Professor of Veterinary Medicine, University of California, Davis, and Todd Cornish, Professor of Veterinary Medicine, University of California, Davis

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

Animal behavior research is getting better at keeping observer bias from sneaking in – but there’s still room to improve

Published

on

theconversation.com – Todd M. Freeberg, Professor and Associate Head of Psychology, of Tennessee – 2024-05-03 07:16:49

What you expect can influence what you think you see.

Auscape/Universal Images Group via Getty Images

Todd M. Freeberg, University of Tennessee

Animal behavior research relies on careful observation of animals. Researchers might spend months in a jungle habitat watching tropical birds mate and raise their young. They might track the rates of physical contact in cattle herds of different densities. Or they could record the sounds whales make as they migrate through the ocean.

Advertisement

Animal behavior research can fundamental insights into the natural processes that affect ecosystems around the globe, as well as into our own human minds and behavior.

I study animal behavior – and also the research reported by scientists in my field. One of the challenges of this kind of science is making sure our own assumptions don't influence what we think we see in animal subjects. Like all people, how scientists see the world is shaped by biases and expectations, which can affect how data is recorded and reported. For instance, scientists who in a society with strict gender roles for women and men might interpret things they see animals doing as reflecting those same divisions.

The scientific corrects for such mistakes over time, but scientists have quicker methods at their disposal to minimize potential observer bias. Animal behavior scientists haven't always used these methods – but that's changing. A new study confirms that, over the past decade, studies increasingly adhere to the rigorous best practices that can minimize potential biases in animal behavior research.

Black and white photo of a horse with a man and a small table between them displaying three upright cards.

Adding up?

Karl Krall/Wikimedia Commons

Advertisement

Biases and self-fulfilling prophecies

A German horse named Clever Hans is widely known in the history of animal behavior as a classic example of unconscious bias leading to a false result.

Around the turn of the 20th century, Clever Hans was purported to be able to do math. For example, in response to his owner's prompt “3 + 5,” Clever Hans would tap his hoof eight times. His owner would then reward him with his favorite vegetables. Initial observers reported that the horse's abilities were legitimate and that his owner was not being deceptive.

However, careful analysis by a young scientist named Oskar Pfungst revealed that if the horse could not see his owner, he couldn't answer correctly. So while Clever Hans was not good at math, he was incredibly good at observing his owner's subtle and unconscious cues that gave the math answers away.

In the 1960s, researchers asked human study participants to code the learning ability of rats. Participants were told their rats had been artificially selected over many generations to be either “bright” or “dull” learners. Over several weeks, the participants ran their rats through eight different learning experiments.

Advertisement

In seven out of the eight experiments, the human participants ranked the “bright” rats as being better learners than the “dull” rats when, in reality, the researchers had randomly picked rats from their breeding colony. Bias led the human participants to see what they thought they should see.

Eliminating bias

Given the clear potential for human biases to skew scientific results, textbooks on animal behavior research methods from the 1980s onward have implored researchers to verify their work using at least one of two commonsense methods.

One is making sure the researcher observing the behavior does not know if the subject from one study group or the other. For example, a researcher would measure a cricket's behavior without knowing if it came from the experimental or control group.

The other best practice is utilizing a second researcher, who has fresh eyes and no knowledge of the data, to observe the behavior and code the data. For example, while analyzing a file, I count chickadees taking seeds from a feeder 15 times. Later, a second independent observer counts the same number.

Advertisement

Yet these methods to minimize possible biases are often not employed by researchers in animal behavior, perhaps because these best practices take more time and effort.

In 2012, my colleagues and I reviewed nearly 1,000 articles published in five leading animal behavior journals between 1970 and 2010 to see how many reported these methods to minimize potential bias. Less than 10% did so. By contrast, the journal Infancy, which focuses on human infant behavior, was far more rigorous: Over 80% of its articles reported using methods to avoid bias.

It's a problem not just confined to my field. A 2015 of published articles in the sciences found that blind protocols are uncommon. It also found that studies using blind methods detected smaller differences between the key groups being observed to studies that didn't use blind methods, suggesting potential biases led to more notable results.

In the years after we published our article, it was cited regularly and we wondered if there had been any improvement in the field. So, we recently reviewed 40 articles from each of the same five journals for the year 2020.

Advertisement

We found the rate of papers that reported controlling for bias improved in all five journals, from under 10% in our 2012 article to just over 50% in our new review. These rates of still lag behind the journal Infancy, however, which was 95% in 2020.

All in all, things are looking up, but the animal behavior field can still do better. Practically, with increasingly more portable and affordable audio and video recording technology, it's getting easier to carry out methods that minimize potential biases. The more the field of animal behavior sticks with these best practices, the stronger the foundation of knowledge and public trust in this science will become.The Conversation

Todd M. Freeberg, Professor and Associate Head of Psychology, University of Tennessee

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement
Continue Reading

The Conversation

A look inside the cyberwar between Israel and Hamas reveals the civilian toll

Published

on

theconversation.com – Ryan Shandler, Professor of Cybersecurity and International Relations, Georgia Institute of Technology – 2024-05-03 07:16:12
The conflict between Israel and Hamas is happening online as well as on the ground.
Gwengoat/iStock / Getty Images Plus

Ryan Shandler, Georgia Institute of Technology; Daphna Canetti, University of Haifa, and Tal Mimran, Zefat Academic College

The news about the Israel-Hamas war is filled with reports of Israeli families huddling in fear from relentless rocket attacks, Israeli tanks and artillery flattening buildings in the Gaza Strip, hundreds of kidnapped hostages imprisoned in subterranean tunnels, and millions of people driven from their homes by fighting.

But beyond the visceral violence lies a hidden layer of the war – an online conflict. We are scholars of cyberwarfare who have cataloged and analyzed the various cyber operations conducted during the war by Hamas, Israel and other nations and hacking groups supporting one side or the other. The data paints a picture of an unseen facet of the conflict, and it offers insights about the nature of cyber conflict more broadly.

The main conclusion we've drawn is that the consequences of cyber conflict are primarily felt by civilians, not the soldiers or militants actively engaged in the fighting. We find that the cyberattacks inflict on digital is far less significant than the resulting harm to humans, and the resulting upward spiral of violence.

Advertisement

Hamas' cyberwarfare activities

The cyberattacks Israeli and civilian systems have had mixed effects. Some technically simple attacks succeeded in obtaining crucial intelligence that assisted Hamas fighters' incursion into Israel. Other attacks employed a scattershot approach, targeting anything within digital reach – hospitals, universities, banks and newspapers. These attacks didn't serve any military purpose, but simply aimed to disrupt Israeli life and terrorize the public.

The quantity and sophistication of the attacks have made clear that hackers working for the government of Iran, a key Hamas funder and supplier, are supporting Hamas' online warfare. Other “hacktivists” and private hacking groups based in countries as varied as Sudan, Pakistan and Russia have also joined the fray.

Before the deadly Oct. 7, 2023 terror attack on Israel that sparked the current war, Hamas cyber operatives were working to support the attack planning. A Hamas hacking unit called Gaza Cybergang spied on Israel in search of sensitive information about Israeli military installations. The information they gleaned was instrumental during the attack.

Hamas hackers also conducted phishing attacks, relatively simple attacks in which fake email or text messages resemble legitimate ones and encourage a user to either reply with sensitive information or click on a link that downloads malicious software to their computer or mobile phone.

Advertisement

As the Oct. 7 attack unfolded, the pro-Palestinian hacktivist group AnonGhost released a mobile app with the same name as a prominent reputable app that gives Israeli citizens warnings about impending attacks from Hamas into Israel. AnonGhost issued false alerts, reportedly, one about a nuclear attack – and collected users' data, including their contacts, call logs and text messages.

However, since full-fledged hostilities erupted, Hamas has been largely unable to carry out effective cyberattacks that aid its war efforts. As a result, the group turned to information warfare, seeking to evoke panic and shift public opinion.

The most common type of attack that Hamas' cyberwarriors and their allies use now is a distributed denial-of-service, when a barrage of nonsense internet traffic is aimed at one or more websites, email servers or other internet-connected systems. They get overwhelmed by the nonsense traffic and either shut down or cease to function properly.

Denial-of-service attacks have hit websites for news media outlets, banks, financial institutions and government agencies. One attack took the Jerusalem Post website offline for two days. The group that claimed responsibility for that attack was a religious hacktivist group called Anonymous Sudan, with known connections to Russian hacking groups.

Advertisement

Hamas and its online allies are also using wiper malware, which infects a computer and destroys its data. This kind of attack does not serve a purpose such as extortion or surveillance – it just aims to destroy everything in its wake.

We also recorded several attacks that infiltrated databases and released their contents, such as one where the private data of at Ono Academic College was published online.

Another series of attacks took control of digital billboards to display the Palestinian in sites around Israel, along with false news about military defeats. These attacks are part of a broader misinformation effort designed to shape domestic debate and terrorize Israeli civilians.

A billboard reads 'Hacked' and contains a pro-Palestinian message.
Electronic billboards have been to display pro-Palestinian messages around the world, including this one in Spain.
Horacio Villalobos/Corbis via Getty Images

Israel's activities

By contrast with Hamas, Israel is a global cyber power whose military possesses some of the strongest cyber warfare capabilities in the world.

Yet the effectiveness of Israel's cyber arsenal is limited because Hamas doesn't depend on the internet very much. Without any targets to strike on a digital battlefield, Israel's primary strategy has been to turn on or off internet connectivity in Gaza. It can do this because Israel controls the electricity and internet cables that serve Gaza.

Advertisement

On Oct. 27, 2023, Israel imposed a near-total telecommunications blackout that lasted for approximately 34 hours. The telecommunications blackout was condemned by international , including the World Health Organization, whose director general posted that the blackout made it “impossible for ambulances to reach the injured.” Without internet or telephone connections, Palestinians in Gaza can't call an ambulance, nor can medical staff stay connected with their dispatch centers.

Similar internet shutdowns have occurred frequently since then. Due to damage, displacement and power and internet disruptions, internet connectivity in Gaza has been reduced to 15% of the typical rate.

During periods when there was internet service in Gaza, pro-Israeli hacktivists got involved. For example, the group WeRedEvils crashed the Gaza Now news site. As hostilities intensified, up to 60% of all traffic to Palestinian websites was made up of denial-of-service attack traffic, according to Cloudflare, a U.S.-based data-transfer and tracking company. The bulk of the attacks were aimed at banks and technology companies.

The U.S. is involved, too. The federal Cybersecurity and Infrastructure Security Agency is working with the Israelis to help thwart some cyberattacks.

Advertisement

A few observations about online conflict

In contrast to Hollywood depictions of cyber warfare, where unstoppable hackers can cripple entire armies and countries with the push of a button, the reality of cyber power is more constrained. Digital battles cannot win wars. Most of the online operations in the Israel-Hamas war have little effect on the actual battlefield. They involve spying or propaganda, not wholesale destruction.

Our data shows that cyber warfare doesn't necessarily give terror groups the ability to face major powers on more equal terms. Hamas' online operations have not been able to offset Israel's military superiority. But Israel's online capabilities are not a significant advantage against a largely offline opponent.

Perhaps most importantly, though, is our recurring finding that civilians are the foremost victims of cyberattacks during war. In our experiments, conducted among more than 10,000 people over 10 years, we have seen that cyberattacks arouse severe psychological distress – akin even to the harm generated by physical terrorism. When confronted with cyberattacks, people feel trapped and anxious, and their sense of safety plummets. As a result, victims lash out and demand strong retaliation in a way that fuels cycles of violence.

As Israel and Hamas volley cyberattacks back and forth, innocent people are caught in the crossfire. This human dimension of cyber warfare is the threat that worries us.The Conversation

Ryan Shandler, Professor of Cybersecurity and International Relations, Georgia Institute of Technology; Daphna Canetti, Professor of Political Science, University of Haifa, and Tal Mimran, Associate Professor of International Law, Zefat Academic College

Advertisement

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Continue Reading

The Conversation

Boeing’s Starliner is about to launch − if successful, the test represents an important milestone for commercial spaceflight

Published

on

theconversation.com – Wendy Whitman Cobb, Professor of Strategy and Security Studies, – 2024-05-02 07:24:25

Boeing's Starliner spacecraft on approach to the International Space Station during an uncrewed test in 2022.

Bob Hines/NASA

Wendy Whitman Cobb, Air University

If all goes well late on May 6, 2024, NASA astronauts Butch Wilmore and Suni Williams will blast off into space on Boeing's Starliner spacecraft. Launching from the Kennedy Space Center, this last crucial test for Starliner will test out the new spacecraft and take the pair to the International Space Station for about a week.

Advertisement

Part of NASA's commercial crew program, this long-delayed mission will represent the vehicle's first crewed launch. If successful, it will give NASA – and in the future, space tourists – more options for getting to low Earth orbit.

Two people wearing blue jumpsuits hug in front of a plane.

Suni Williams, right, and Butch Wilmore, the two astronauts who will crew the Starliner test.

AP Photo/Terry Renna

From my perspective as a space policy expert, Starliner's launch represents another significant milestone in the of the commercial space industry. But the mission's troubled history also shows just how difficult the path to space can be, even for an experienced company like Boeing.

Origins and development

Following the retirement of NASA's space shuttle in 2011, NASA invited commercial space companies to help the agency transport cargo and crew to the International Space Station.

Advertisement

In 2014, NASA selected Boeing and SpaceX to build their respective crew vehicles: Starliner and Dragon.

Boeing's vehicle, Starliner, was built to carry up to seven crew members to and from low Earth orbit. For NASA missions to the International Space Station, it will carry up to four at a time, and it's designed to remain docked to the station for up to seven months. At 15 feet, the capsule where the crew will sit is slightly bigger than an Apollo command module or a SpaceX Dragon.

Boeing designed Starliner to be partially reusable to reduce the cost of getting to space. Though the Atlas V rocket it will take to space and the service module that supports the craft are both expendable, Starliner's crew capsule can be reused up to 10 times, with a six-month turnaround. Boeing has built two flightworthy Starliners to date.

A conical vehicle sitting on a flat vehicle.

The Starliner capsule in transit.

AP Photo/John Raoux

Advertisement

Starliner's development has with setbacks. Though Boeing received US$4.2 from NASA, with $2.6 billion for SpaceX, Boeing spent more than $1.5 billion extra in developing the spacecraft.

On Starliner's first uncrewed test flight in 2019, a series of software and hardware failures prevented it from getting to its planned orbit as well as docking with the International Space Station. After testing out some of its systems, it landed successfully at White Sands Missile Range in New Mexico.

In 2022, after identifying and making more than 80 fixes, Starliner conducted a second uncrewed test flight. This time, the vehicle did successfully dock with the International Space Station and landed six days later in New Mexico.

The inside of a Starliner holds a few astronauts. Crew members first trained for the launch in a simulator.

Still, Boeing delayed the first crewed launch for Starliner from 2023 to 2024 because of additional problems. One involved Starliner's parachutes, which help to slow the vehicle as it returns to Earth. Tests found that some links in those parachute lines were weaker than expected, which could have caused them to break. A second problem was the use of flammable tape that could pose a fire hazard.

Advertisement

A major question stemming from these delays concerns why Starliner has been so difficult to develop. For one, NASA officials admitted that it did not as much oversight for Starliner as it did for SpaceX's Dragon because of the agency's familiarity with Boeing.

And Boeing has experienced several problems recently, most visibly with the safety of its airplanes. Astronaut Butch Wilmore has denied that Starliner's problems reflect these troubles.

But several of Boeing's other space activities beyond Starliner have also experienced mechanical failures and budget pressure, the Space Launch System. This system is planned to be the main rocket for NASA's Artemis program, which plans to return humans to the Moon for the first time since the Apollo era.

Significance for NASA and commercial spaceflight

Given these difficulties, Starliner's success will be important for Boeing's future space efforts. Even if SpaceX's Dragon can successfully transport NASA astronauts to the International Space Station, the agency needs a backup. And that's where Starliner in.

Advertisement

Following the Challenger explosion in 1986 and the Columbia shuttle accident in 2003, NASA retired the space shuttle in 2011. The agency was left with few options to get astronauts to and from space. Having a second commercial crew vehicle provider means that NASA will not have to depend on one company or vehicle for space launches as it previously had to.

Perhaps more importantly, if Starliner is successful, it could compete with SpaceX. Though there's no crushing demand for space right now, and Boeing has no plans to market Starliner for tourism anytime soon, competition is important in any market to drive down costs and increase innovation.

More such competition is likely coming. Sierra Space's Dream Chaser is planning to launch later this year to transport cargo for NASA to the International Space Station. A crewed version of the space plane is also being developed for the next round of NASA's commercial crew program. Blue Origin is working with NASA in this latest round of commercial crew contracts and developing a lunar lander for the Artemis program.

A conical white spacecraft with two rectangular solar panels in space, with the Earth in the background.

SpaceX's dragon capsule.

NASA TV via AP

Advertisement

Though SpaceX has made commercial spaceflight look relatively easy, Boeing's rocky experience with Starliner shows just how hard spaceflight continues to be, even for an experienced company.

Starliner is important not just for NASA and Boeing, but to demonstrate that more than one company can find success in the commercial space industry. A successful launch would also give NASA more confidence in the industry's ability to support operations in Earth's orbit while the agency focuses on future missions to the Moon and beyond.The Conversation

Wendy Whitman Cobb, Professor of Strategy and Security Studies, Air University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement
Continue Reading

News from the South

Trending