Connect with us

The Conversation

How AI could take over elections – and undermine democracy

Published

on

An AI-driven political campaign could be all things to all people. Eric Smalley, TCUS; Biodiversity Heritage Library/Flickr; Taymaz Valley/Flickr, CC BY-ND

Could organizations use artificial intelligence language models such as ChatGPT to induce voters to behave in specific ways?

Sen. Josh Hawley asked OpenAI CEO Sam Altman this question in a May 16, 2023, U.S. Senate hearing on artificial intelligence. Altman replied that he was indeed concerned that some people might use language models to manipulate, persuade and engage in one-on-one interactions with voters.

Altman did not elaborate, but he might have had something like this scenario in mind. Imagine that soon, political technologists develop a machine called Clogger – a political campaign in a black box. Clogger relentlessly pursues just one objective: to maximize the chances that its candidate – the campaign that buys the services of Clogger Inc. – prevails in an election.

While platforms like Facebook, Twitter and YouTube use forms of AI to get users to spend more time on their sites, Clogger’s AI would have a different objective: to change people’s voting behavior.

How Clogger would work

As a political scientist and a legal scholar who study the intersection of technology and democracy, we believe that something like Clogger could use automation to dramatically increase the scale and potentially the effectiveness of behavior manipulation and microtargeting techniques that political campaigns have used since the early 2000s. Just as advertisers use your browsing and social media history to individually target commercial and political ads now, Clogger would pay attention to you – and hundreds of millions of other voters – individually.

It would offer three advances over the current state-of-the-art algorithmic behavior manipulation. First, its language model would generate messages — texts, social media and email, perhaps including images and videos — tailored to you personally. Whereas advertisers strategically place a relatively small number of ads, language models such as ChatGPT can generate countless unique messages for you personally – and millions for others – over the course of a campaign.

Second, Clogger would use a technique called reinforcement learning to generate a succession of messages that become increasingly more likely to change your vote. Reinforcement learning is a machine-learning, trial-and-error approach in which the computer takes actions and gets feedback about which work better in order to learn how to accomplish an objective. Machines that can play Go, Chess and many video games better than any human have used reinforcement learning.

YouTube video
How reinforcement learning works.

Third, over the course of a campaign, Clogger’s messages could evolve in order to take into account your responses to the machine’s prior dispatches and what it has learned about changing others’ minds. Clogger would be able to carry on dynamic “conversations” with you – and millions of other people – over time. Clogger’s messages would be similar to ads that follow you across different websites and social media.

The nature of AI

Three more features – or bugs – are worth noting.

First, the messages that Clogger sends may or may not be political in content. The machine’s only goal is to maximize vote share, and it would likely devise strategies for achieving this goal that no human campaigner would have thought of.

One possibility is sending likely opponent voters information about nonpolitical passions that they have in sports or entertainment to bury the political messaging they receive. Another possibility is sending off-putting messages – for example incontinence advertisements – timed to coincide with opponents’ messaging. And another is manipulating voters’ social media friend groups to give the sense that their social circles support its candidate.

Second, Clogger has no regard for truth. Indeed, it has no way of knowing what is true or false. Language model “hallucinations” are not a problem for this machine because its objective is to change your vote, not to provide accurate information.

Third, because it is a black box type of artificial intelligence, people would have no way to know what strategies it uses.

YouTube video
The field of explainable AI aims to open the black box of many machine-learning models so people can understand how they work.

Clogocracy

If the Republican presidential campaign were to deploy Clogger in 2024, the Democratic campaign would likely be compelled to respond in kind, perhaps with a similar machine. Call it Dogger. If the campaign managers thought that these machines were effective, the presidential contest might well come down to Clogger vs. Dogger, and the winner would be the client of the more effective machine.

Political scientists and pundits would have much to say about why one or the other AI prevailed, but likely no one would really know. The president will have been elected not because his or her policy proposals or political ideas persuaded more Americans, but because he or she had the more effective AI. The content that won the day would have come from an AI focused solely on victory, with no political ideas of its own, rather than from candidates or parties.

In this very important sense, a machine would have won the election rather than a person. The election would no longer be democratic, even though all of the ordinary activities of democracy – the speeches, the ads, the messages, the voting and the counting of votes – will have occurred.

The AI-elected president could then go one of two ways. He or she could use the mantle of election to pursue Republican or Democratic party policies. But because the party ideas may have had little to do with why people voted the way that they did – Clogger and Dogger don’t care about policy views – the president’s actions would not necessarily reflect the will of the voters. Voters would have been manipulated by the AI rather than freely choosing their political leaders and policies.

Another path is for the president to pursue the messages, behaviors and policies that the machine predicts will maximize the chances of reelection. On this path, the president would have no particular platform or agenda beyond maintaining power. The president’s actions, guided by Clogger, would be those most likely to manipulate voters rather than serve their genuine interests or even the president’s own ideology.

Avoiding Clogocracy

It would be possible to avoid AI election manipulation if candidates, campaigns and consultants all forswore the use of such political AI. We believe that is unlikely. If politically effective black boxes were developed, the temptation to use them would be almost irresistible. Indeed, political consultants might well see using these tools as required by their professional responsibility to help their candidates win. And once one candidate uses such an effective tool, the opponents could hardly be expected to resist by disarming unilaterally.

Enhanced privacy protection would help. Clogger would depend on access to vast amounts of personal data in order to target individuals, craft messages tailored to persuade or manipulate them, and track and retarget them over the course of a campaign. Every bit of that information that companies or policymakers deny the machine would make it less effective.

YouTube video
Strong data privacy laws could help steer AI away from being manipulative.

Another solution lies with elections commissions. They could try to ban or severely regulate these machines. There’s a fierce debate about whether such “replicant” speech, even if it’s political in nature, can be regulated. The U.S.’s extreme free speech tradition leads many leading academics to say it cannot.

But there is no reason to automatically extend the First Amendment’s protection to the product of these machines. The nation might well choose to give machines rights, but that should be a decision grounded in the challenges of today, not the misplaced assumption that James Madison’s views in 1789 were intended to apply to AI.

European Union regulators are moving in this direction. Policymakers revised the European Parliament’s draft of its Artificial Intelligence Act to designate “AI systems to influence voters in campaigns” as “high risk” and subject to regulatory scrutiny.

One constitutionally safer, if smaller, step, already adopted in part by European internet regulators and in California, is to prohibit bots from passing themselves off as people. For example, regulation might require that campaign messages come with disclaimers when the content they contain is generated by machines rather than humans.

This would be like the advertising disclaimer requirements – “Paid for by the Sam Jones for Congress Committee” – but modified to reflect its AI origin: “This AI-generated ad was paid for by the Sam Jones for Congress Committee.” A stronger version could require: “This AI-generated message is being sent to you by the Sam Jones for Congress Committee because Clogger has predicted that doing so will increase your chances of voting for Sam Jones by 0.0002%.” At the very least, we believe voters deserve to know when it is a bot speaking to them, and they should know why, as well.

The possibility of a system like Clogger shows that the path toward human collective disempowerment may not require some superhuman artificial general intelligence. It might just require overeager campaigners and consultants who have powerful new tools that can effectively push millions of people’s many buttons.

Learn what you need to know about artificial intelligence by signing up for our newsletter series of four emails delivered over the course of a week. You can read all our stories on generative AI at TheConversation.com.

Archon Fung consults for Apple University.

Lawrence Lessig does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

———-
Read More

By: Archon Fung, Professor of Citizenship and Self-Government, Harvard Kennedy School
Title: How AI could take over elections – and undermine democracy
Sourced From: theconversation.com/how-ai-could-take-over-elections-and-undermine-democracy-206051
Published Date: Fri, 02 Jun 2023 13:42:24 +0000

The Conversation

AI is giving a boost to efforts to monitor health via radar

Published

on

theconversation.com – Chandler Bauder, Electronics Engineer, U.S. Naval Research Laboratory – 2025-04-30 07:48:00

AI-powered radar could enable contactless health monitoring in the home.
Chandler Bauder

Chandler Bauder, U.S. Naval Research Laboratory and Aly Fathy, University of Tennessee

If you wanted to check someone’s pulse from across the room, for example to remotely monitor an elderly relative, how could you do it? You might think it’s impossible, because common health-monitoring devices such as fingertip pulse oximeters and smartwatches have to be in contact with the body.

However, researchers are developing technologies that can monitor a person’s vital signs at a distance. One of those technologies is radar.

We are electrical engineers who study radar systems. We have combined advances in radar technology and artificial intelligence to reliably monitor breathing and heart rate without contacting the body.

Noncontact health monitoring has the potential to be more comfortable and easier to use than traditional methods, particularly for people looking to monitor their vital signs at home.

How radar works

Radar is commonly known for measuring the speed of cars, making weather forecasts and detecting obstacles at sea and in the air. It works by sending out electromagnetic waves that travel at the speed of light, waiting for them to bounce off objects in their path, and sensing them when they return to the device.

Radar can tell how far away things are, how fast they’re moving, and even their shape by analyzing the properties of the reflected waves.

Radar can also be used to monitor vital signs such as breathing and heart rate. Each breath or heartbeat causes your chest to move ever so slightly – movement that’s hard for people to see or feel. However, today’s radars are sensitive enough to detect these tiny movements, even from across a room.

Advantages of radar

There are other technologies that can be used to measure health remotely. Camera-based techniques can use infrared light to monitor changes in the surface of the skin in the same manner as pulse oximeters, revealing information about your heart’s activity. Computer vision systems can also monitor breathing and other activities, such as sleep, and they can detect when someone falls.

However, cameras often fail in cases where the body is obstructed by blankets or clothes, or when lighting is inadequate. There are also concerns that different skin tones reflect infrared light differently, causing inaccurate readings for people with darker skin. Additionally, depending on high-resolution cameras for long-term health monitoring brings up serious concerns about patient privacy.

side-by-side images, one of a person and the other a verticle series of nested blobs of color
Radar sees the world in terms of how strongly objects in its view reflect the transmitted signals. The resolution of images it can generate are much lower than images cameras produce.
Chandler Bauder

Radar, on the other hand, solves many of these problems. The wavelengths of the transmitted waves are much longer than those of visible or infrared light, allowing the waves to pass through blankets, clothing and even walls. The measurements aren’t affected by lighting or skin tone, making them more reliable in different conditions.

Radar imagery is also extremely low resolution – think old Game Boy graphics versus a modern 4K TV – so it doesn’t capture enough detail to be used to identify someone, but it can still monitor important activities. While it does project energy, the amount does not pose a health hazard. The health-monitoring radars operate at frequencies and power levels similar to the phone in your pocket.

Radar + AI

Radar is powerful, but it has a big challenge: It picks up everything that moves. Since it can detect tiny chest movements from the heart beating, it also picks up larger movements from the head, limbs or other people nearby. This makes it difficult for traditional processing techniques to extract vital signs clearly.

To address this problem we created a kind of “brain” to make the radar smarter. This brain, which we named mm-MuRe, is a neural network – a type of artificial intelligence – that learns directly from raw radar signals and estimates chest movements. This approach is called end-to-end learning. It means that, unlike other radar plus AI techniques, the network figures out on its own how to ignore the noise and focus only on the important signals.

a diagram with two cartoon representations of people on one side, a brain on the other and vertical curved lines in betwenn
In our study, we used AI to transform raw, unprocessed radar signals into vital signs waveforms of one or two people.
Chandler Bauder

We found that this AI enhancement not only gives more accurate results, it also works faster than traditional methods. It handles multiple people at once, for example an elderly couple, and adapts to new situations, even those it didn’t see during training – such as when people are sitting at different heights, riding in a car or standing close together.

Implications for health care

Reliable remote health monitoring using radar and AI could be a major boon for health care. With no need to touch the patient’s skin, risks of rashes, contamination and discomfort could be greatly reduced. It’s especially helpful in long-term care, where reducing wires and devices can make life significantly easier for patients and caregivers.

Imagine a nursing home where radar quietly watches over residents, alerting caregivers immediately if someone has breathing trouble, falls or needs help. It can be implemented as a home system that checks your breathing while you sleep – no wearables required. Doctors could even use radar to remotely monitor patients recovering from surgery or illness.

This technology is moving quickly toward real-world use. In the future, checking your health could be as simple as walking into a room, with invisible waves and smart AI working silently to take your vital signs.The Conversation

Chandler Bauder, Electronics Engineer, U.S. Naval Research Laboratory and Aly Fathy, Professor of Electrical Engineering, University of Tennessee

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post AI is giving a boost to efforts to monitor health via radar appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The article is focused on a scientific and technological development related to health monitoring using radar and artificial intelligence. It provides an overview of the research process, technical details, and potential health care applications without expressing a clear ideological stance. The tone remains neutral, emphasizing the technical capabilities and benefits of the technology, particularly in long-term care and home health monitoring. While it does mention potential privacy concerns with other methods like cameras, it does so without taking a political position, focusing instead on the advantages of radar. The content adheres to factual reporting and avoids overt bias or advocacy, presenting the information in a straightforward and informative manner.

Continue Reading

The Conversation

Forensics tool ‘reanimates’ the ‘brains’ of AIs that fail in order to understand what went wrong

Published

on

theconversation.com – David Oygenblik, Ph.D. Student in Electrical and Computer Engineering, Georgia Institute of Technology – 2025-04-30 07:47:00

Tesla crashes are only the most glaring of AI failures.
South Jordan Police Department via APPEAR

David Oygenblik, Georgia Institute of Technology and Brendan Saltaformaggio, Georgia Institute of Technology

From drones delivering medical supplies to digital assistants performing everyday tasks, AI-powered systems are becoming increasingly embedded in everyday life. The creators of these innovations promise transformative benefits. For some people, mainstream applications such as ChatGPT and Claude can seem like magic. But these systems are not magical, nor are they foolproof – they can and do regularly fail to work as intended.

AI systems can malfunction due to technical design flaws or biased training data. They can also suffer from vulnerabilities in their code, which can be exploited by malicious hackers. Isolating the cause of an AI failure is imperative for fixing the system.

But AI systems are typically opaque, even to their creators. The challenge is how to investigate AI systems after they fail or fall victim to attack. There are techniques for inspecting AI systems, but they require access to the AI system’s internal data. This access is not guaranteed, especially to forensic investigators called in to determine the cause of a proprietary AI system failure, making investigation impossible.

We are computer scientists who study digital forensics. Our team at the Georgia Institute of Technology has built a system, AI Psychiatry, or AIP, that can recreate the scenario in which an AI failed in order to determine what went wrong. The system addresses the challenges of AI forensics by recovering and “reanimating” a suspect AI model so it can be systematically tested.

Uncertainty of AI

Imagine a self-driving car veers off the road for no easily discernible reason and then crashes. Logs and sensor data might suggest that a faulty camera caused the AI to misinterpret a road sign as a command to swerve. After a mission-critical failure such as an autonomous vehicle crash, investigators need to determine exactly what caused the error.

Was the crash triggered by a malicious attack on the AI? In this hypothetical case, the camera’s faultiness could be the result of a security vulnerability or bug in its software that was exploited by a hacker. If investigators find such a vulnerability, they have to determine whether that caused the crash. But making that determination is no small feat.

Although there are forensic methods for recovering some evidence from failures of drones, autonomous vehicles and other so-called cyber-physical systems, none can capture the clues required to fully investigate the AI in that system. Advanced AIs can even update their decision-making – and consequently the clues – continuously, making it impossible to investigate the most up-to-date models with existing methods.

YouTube video
Researchers are working on making AI systems more transparent, but unless and until those efforts transform the field, there will be a need for forensics tools to at least understand AI failures.

Pathology for AI

AI Psychiatry applies a series of forensic algorithms to isolate the data behind the AI system’s decision-making. These pieces are then reassembled into a functional model that performs identically to the original model. Investigators can “reanimate” the AI in a controlled environment and test it with malicious inputs to see whether it exhibits harmful or hidden behaviors.

AI Psychiatry takes in as input a memory image, a snapshot of the bits and bytes loaded when the AI was operational. The memory image at the time of the crash in the autonomous vehicle scenario holds crucial clues about the internal state and decision-making processes of the AI controlling the vehicle. With AI Psychiatry, investigators can now lift the exact AI model from memory, dissect its bits and bytes, and load the model into a secure environment for testing.

Our team tested AI Psychiatry on 30 AI models, 24 of which were intentionally “backdoored” to produce incorrect outcomes under specific triggers. The system was successfully able to recover, rehost and test every model, including models commonly used in real-world scenarios such as street sign recognition in autonomous vehicles.

Thus far, our tests suggest that AI Psychiatry can effectively solve the digital mystery behind a failure such as an autonomous car crash that previously would have left more questions than answers. And if it does not find a vulnerability in the car’s AI system, AI Psychiatry allows investigators to rule out the AI and look for other causes such as a faulty camera.

Not just for autonomous vehicles

AI Psychiatry’s main algorithm is generic: It focuses on the universal components that all AI models must have to make decisions. This makes our approach readily extendable to any AI models that use popular AI development frameworks. Anyone working to investigate a possible AI failure can use our system to assess a model without prior knowledge of its exact architecture.

Whether the AI is a bot that makes product recommendations or a system that guides autonomous drone fleets, AI Psychiatry can recover and rehost the AI for analysis. AI Psychiatry is entirely open source for any investigator to use.

AI Psychiatry can also serve as a valuable tool for conducting audits on AI systems before problems arise. With government agencies from law enforcement to child protective services integrating AI systems into their workflows, AI audits are becoming an increasingly common oversight requirement at the state level. With a tool like AI Psychiatry in hand, auditors can apply a consistent forensic methodology across diverse AI platforms and deployments.

In the long run, this will pay meaningful dividends both for the creators of AI systems and everyone affected by the tasks they perform.The Conversation

David Oygenblik, Ph.D. Student in Electrical and Computer Engineering, Georgia Institute of Technology and Brendan Saltaformaggio, Associate Professor of Cybersecurity and Privacy, and Electrical and Computer Engineering, Georgia Institute of Technology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Forensics tool ‘reanimates’ the ‘brains’ of AIs that fail in order to understand what went wrong appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The article focuses on the development of a forensic tool, AI Psychiatry, designed to investigate the failure of AI systems. It provides technical insights into how this tool can help investigate and address AI failures, particularly in autonomous vehicles, without promoting any ideological stance. The content is centered on technological advancements and their practical applications, with an emphasis on problem-solving and transparency in AI systems. The tone is neutral, focusing on factual reporting about AI forensics and the technical capabilities of the system. There is no discernible political bias in the article, as it largely sticks to technical and academic subjects without introducing political viewpoints.

Continue Reading

The Conversation

Young bats learn to be discriminating when listening for their next meal

Published

on

theconversation.com – Logan S. James, Research Associate in Animal Behavior, The University of Texas at Austin – 2025-04-29 18:07:00

A frog-eating bat approaches a túngara frog, one of its preferred foods.
Grant Maslowski

Logan S. James, The University of Texas at Austin; Rachel Page, Smithsonian Institution, and Ximena Bernal, Purdue University

It is late at night, and we are silently watching a bat in a roost through a night-vision camera. From a nearby speaker comes a long, rattling trill.

Cane toad’s rattling trill call.

The bat briefly perks up and wiggles its ears as it listens to the sound before dropping its head back down, uninterested.

Next from the speaker comes a higher-pitched “whine” followed by a “chuck.”

Túngara frog’s ‘whine chuck’ call.

The bat vigorously shakes its ears and then spreads its wings as it launches from the roost and dives down to attack the speaker.

Bats show tremendous variation in the foods they eat to survive. Some species specialize on fruits, others on insects, others on flower nectar. There are even species that catch fish with their feet.

Bat eating frog
The calls male frogs use to attract mates also attract eavesdropping predators. Here, a frog-eating bat consumes an unlucky male túngara frog.
Marcos Guerra, Smithsonian Tropical Research Institute

At the Smithsonian Tropical Research Institute in Panama, we’ve been studying one species, the fringe-lipped bat (Trachops cirrhosus), for decades. This bat is a carnivore that specializes in feeding on frogs.

Male frogs from many species call to attract female frogs. Frog-eating bats eavesdrop on those calls to find their next meal. But how do the bats come to associate sounds and prey?

We were interested in understanding how predators that eavesdrop on their prey acquire the ability to discriminate between tasty and dangerous meals. We combined our expertise on animal behavior, bat cognition and frog communication to investigate.

How do bats know the sound of a tasty meal?

There are nearly 8,000 frog and toad species in the world, and each one has a unique call. For instance, the first rattling call that we played from our speaker came from a large and toxic cane toad. The second “whine chuck” came from the túngara frog, a preferred prey species for these bats. Just as herpetologists can tell a frog species by its call, frog-eating bats can use these calls to identify the best meal.

Over the years, our research team has learned a great deal from frog-eating bats about how sound and echolocation are used to find prey, as well as the role of learning and memory in foraging success. In our newly published study, we focused on how associations between the sounds a bat hears and the prey quality it expects arise within the lifespan of an individual bat.

Bat capturing frog from a pond
Adult bats like the one pictured have extensive acoustic repertoires and remember specific frog calls year after year. Young bats must learn which calls to respond to – and, critically, which to ignore – over time through experience.
Grant Maslowski

We considered whether the associations between sound and a delicious meal are an evolved specialty that bats are born with. But this possibility seemed unlikely because the bat species we study has a large geographic distribution across Central and South America, and the species of frogs found across this range vary tremendously.

Instead, we hypothesized that bats learn to associate different sounds with food as they grow up. But we had to test this idea.

First, we and our collaborators spent time in the forest and at ponds to record the mating calls from 15 of the most common frog and toad species in our study area in Panama.

Researcher untangles a bat from a finely woven mistnet at night.
Rachel Page, one of the lead authors on the study, takes a bat out of a mist net in Panama.
Jorge Alemán, Smithsonian Tropical Research Institute

Then, we set up mist nets along streams in Soberanía National Park to capture wild bats for the study.

Frog call, bat response

For the testing, each bat was housed individually in a large, outdoor flight chamber. From a speaker on the ground in the center, we played calls from one frog species on loop for 30 seconds and measured the behavior of the bat, which was hanging from a cloth roost. As we expected, adult bats were generally uninterested in the sounds of species that were unpalatable, such as those with toxins or those that are too large for the bat to carry.

But it was a different story for young bats. Juveniles responded with significantly more predatory behaviors in response to the calls of toxic toads compared with the adults. They also responded more weakly than adults to the sounds of túngara frogs, a palatable, abundant prey that adult bats prefer.

Thus it seems that juvenile bats must learn the associations between sounds and food over the course of their lives. As they grow up, we believe they learn to ignore the calls of frogs that aren’t worth the trouble and zero in on the calls of frogs that will be a good meal.

To better understand how sounds drive prey associations, we measured the acoustic properties of the different calls. We found that some of the most noticeable features of the calls correlated with body size: Larger frogs produce lower-frequency calls – that is, their voices are deeper. Both the adult and juvenile bats responded more strongly to larger species, which would provide larger meals.

However, there was a clear exception in the responses of adults, where the toxic toads and very large frogs elicited much weaker responses than expected for their body size. This finding led us to hypothesize that bats have early biases to pay attention to sounds associated with larger body size. Then they must learn through experience that meal quality is not only about size. Some large meals are toxic or impossible to carry, making them unpalatable.

YouTube video
Once the researchers have studied each frog-eating bat for a few days, they safely release it where it was originally captured. Footage courtesy of Léna de Framond-Bénard and Eric de Framond-Bénard, compiled by Caroline Rogan.

After the bats spent a few days with us, we released each one back at its original site of capture. The bats departed, taking with them a small RFID tag, just like the ones pet owners use to identify their dogs and cats, in case we meet again as part of a future study.

As the bats go on with their lives in the wild, we continue our quest to deepen our understanding of the subtleties of information discrimination. How do individuals weed through information overload to make choices that make sense and benefit them? That’s the same challenge we all face each day.The Conversation

Logan S. James, Research Associate in Animal Behavior, The University of Texas at Austin; Rachel Page, Staff Scientist, Smithsonian Tropical Research Institute, Smithsonian Institution, and Ximena Bernal, Professor of Biological Sciences, Purdue University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Young bats learn to be discriminating when listening for their next meal appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The content of this article is a scientific and factual exploration of bat behavior, specifically focusing on the learning processes of young bats in identifying suitable prey based on sound cues. The language used is neutral, without any ideological stance or persuasive elements aimed at pushing a particular viewpoint. The piece primarily conveys research findings and observations made by scientists. The framing is academic and informative, with no evident political, social, or controversial implications influencing the tone. It adheres to neutral, factual reporting and does not present any discernible bias in terms of ideology or political orientation.

Continue Reading

Trending