Connect with us

The Conversation

Do you hear what I see? How blindness changes how you process the sound of movement

Published

on

Do you hear what I see? How blindness changes how you process the sound of movement

Sighted people would have a hard time crossing the street by sound alone.
Maskot/DigitalVision via Getty Images

Ione Fine, University of Washington and Woon Ju Park, University of Washington

Almost nothing in the world is still. Toddlers dash across the living room. Cars zip across the street. Motion is one of the most important features in the environment; the ability to predict the movement of objects in the world is often directly related to survival – whether it’s a gazelle detecting the slow creep of a lion or a driver merging across four lanes of traffic.

Motion is so important that the primate brain evolved a dedicated system for processing visual movement, known as the middle temporal cortex, over 50 million years ago. This region of the brain contains neurons specialized for detecting moving objects. These motion detectors compute the information needed to track objects as they continuously change their location over time, then sends signals about the moving world to other regions of the brain, such as those involved in planning muscle movements.

Diagram of brain with the middle temporal gyrus — a strip on the bottom side of the brain — highlighted in yellow
The middle temporal cortex is involved in processing visual movement.
Gray, vectorized by Mysid, colored by was_a_bee/Wikimedia Commons

It’s easy to assume that you see and hear motion in a similar way. However, exactly how the brain processes auditory motion has been an open scientific question for at least 30 years. This debate centers on two ideas: One supports the existence of specialized auditory motion detectors similar to those found in visual motion, and the other suggests that people hear object motion as discrete snapshots.

As computational neuroscientists, we became curious when we noticed a blind woman confidently crossing a busy intersection. Our laboratory has spent the past 20 years examining where auditory motion is represented in the brains of blind individuals.

For sighted people, crossing a busy street based on hearing alone is an impossible task, because their brains are used to relying on vision to understand where things are. As anyone who has tried to find a beeping cellphone that’s fallen behind the sofa knows, sighted people have a very limited ability to pinpoint the location or movement of objects based on auditory information.

Yet people who become blind are able to make sense of the moving world using only sound. How do people hear motion, and how is this changed by being blind?

Aerial view of pedestrians on a crosswalk, a few cars waiting at the edges
People who are blind are better able to track auditory motion in noisy conditions compared with sighted people.
Orbon Alija/E+ via Getty Images

Crossing a busy street by sound alone

In our recently published study in the journal PNAS, we tackled the question of how blind people hear motion by asking a slightly different version of it: Are blind people better at perceiving auditory motion? And if so, why?

To answer this question, we used a simple task where we asked study participants to judge the direction of a sound that moved left or right. This moving sound was embedded in bursts of stationary background noise resembling radio static that were randomly positioned in space and time.

Our first question was whether blind participants would be better at the task. We measured how loud the auditory motion had to be for participants to be able to perform the task correctly 65% of the time. We found that the hearing of blind participants was no different from that of sighted participants. However, the blind participants were able to determine the direction of the auditory motion at much quieter levels than sighted participants. In other words, people who became blind early in life are better at hearing the auditory motion of objects within a noisy world.

showing motion of object from one corner of a plane to another, where the blind participant is able to detect the position of the object more closely than the sighted participant
Blind participants were able to determine the position of the object as it starts and stops moving more closely than sighted participants.
Ione Fine and Woon Ju Park, CC BY-NC-ND

We then examined how the noise bursts interfered with the ability to tell the direction of motion. For both sighted and blind participants, only the noise bursts at the beginning and the end of each trial had an effect on performance. These results show that people do not track objects continuously using sound: Instead they infer auditory motion from the location of sounds at their beginning and end, more consistent with the snapshot hypothesis.

Both blind and sighted people inferred movement from the start and stop of sounds. So why were blind people so much better at understanding auditory motion than sighted people?

Further analysis of the effects of background noise on the ability to track auditory motion showed that blind participants were affected only by noise bursts occurring at the same locations in space and moments in time as the onset and offset of the moving sound. This means that they were more sensitive to the beginning and end of the actual auditory motion and less susceptible to irrelevant noise bursts.

When you hear what I see

As any parent of a blind child will tell you, understanding motion is just one of the many ways that blind children learn to interact with the world using different cues and actions.

A sighted baby recognizes their parent’s face as they approach the crib, while a blind baby recognizes the sound of their footsteps. A sighted toddler looks toward the dog to attract their parent’s attention, while a blind toddler might pull their parent’s hand in the direction of the barking.

Understanding the ability of blind people to learn how to successfully interact with a world designed for the sighted provides a unique appreciation of the extraordinary flexibility of the human brain.The Conversation

Ione Fine, Professor of Psychology, University of Washington and Woon Ju Park, Research Scientist, University of Washington

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Did you miss our previous article…
https://www.biloxinewsevents.com/?p=315770

The Conversation

Toxic algae blooms are lasting longer than before in Lake Erie − why that’s a worry for people and pets

Published

on

theconversation.com – Gregory J. Dick, Professor of Biology, University of Michigan – 2025-06-26 14:38:00


Federal scientists forecast a mild to moderate harmful algal bloom season in Lake Erie for 2025, though even moderate blooms pose health risks. Harmful algal blooms, mainly caused by excess phosphorus and nitrogen runoff from agriculture, produce toxins harmful to humans, pets, and ecosystems. Recent DNA research revealed new toxins, including microcystins and saxitoxins, raising emerging concerns. Climate change exacerbates blooms by increasing water temperatures and heavy rainfall. Blooms now start earlier and last longer. Reducing nutrient runoff through improved farming practices and wetland restoration, like Ohio’s H2Ohio program, is essential to mitigating future blooms and protecting water quality.

A satellite image from Aug. 13, 2024, shows an algal bloom covering approximately 320 square miles (830 square km) of Lake Erie. By Aug. 22, it had nearly doubled in size.
NASA Earth Observatory

Gregory J. Dick, University of Michigan

Federal scientists released their annual forecast for Lake Erie’s harmful algal blooms on June 26, 2025, and they expect a mild to moderate season. However, anyone who comes in contact with toxic algae can face health risks. And 2014, when toxins from algae blooms contaminated the water supply in Toledo, Ohio, was a moderate year, too.

We asked Gregory J. Dick, who leads the Cooperative Institute for Great Lakes Research, a federally funded center at the University of Michigan that studies harmful algal blooms among other Great Lakes issues, why they’re such a concern.

A bar chart shows 2025's forecast to be more severe than 2023 but less than 2024.
The National Oceanic and Atmospheric Administration’s prediction for harmful algal bloom severity in Lake Erie compared with past years.
NOAA

1. What causes harmful algal blooms?

Harmful algal blooms are dense patches of excessive algae growth that can occur in any type of water body, including ponds, reservoirs, rivers, lakes and oceans. When you see them in freshwater, you’re typically seeing cyanobacteria, also known as blue-green algae.

These photosynthetic bacteria have inhabited our planet for billions of years. In fact, they were responsible for oxygenating Earth’s atmosphere, which enabled plant and animal life as we know it.

An illustration of algae bloom sources shows a farm field, city and large body of water.
The leading source of harmful algal blooms today is nutrient runoff from fertilized farm fields.
Michigan Sea Grant

Algae are natural components of ecosystems, but they cause trouble when they proliferate to high densities, creating what we call blooms.

Harmful algal blooms form scums at the water surface and produce toxins that can harm ecosystems, water quality and human health. They have been reported in all 50 U.S. states, all five Great Lakes and nearly every country around the world. Blue-green algae blooms are becoming more common in inland waters.

The main sources of harmful algal blooms are excess nutrients in the water, typically phosphorus and nitrogen.

Historically, these excess nutrients mainly came from sewage and phosphorus-based detergents used in laundry machines and dishwashers that ended up in waterways. U.S. environmental laws in the early 1970s addressed this by requiring sewage treatment and banning phosphorus detergents, with spectacular success.

How pollution affected Lake Erie in the 1960s, before clean water regulations.

Today, agriculture is the main source of excess nutrients from chemical fertilizer or manure applied to farm fields to grow crops. Rainstorms wash these nutrients into streams and rivers that deliver them to lakes and coastal areas, where they fertilize algal blooms. In the U.S., most of these nutrients come from industrial-scale corn production, which is largely used as animal feed or to produce ethanol for gasoline.

Climate change also exacerbates the problem in two ways. First, cyanobacteria grow faster at higher temperatures. Second, climate-driven increases in precipitation, especially large storms, cause more nutrient runoff that has led to record-setting blooms.

2. What does your team’s DNA testing tell us about Lake Erie’s harmful algal blooms?

Harmful algal blooms contain a mixture of cyanobacterial species that can produce an array of different toxins, many of which are still being discovered.

When my colleagues and I recently sequenced DNA from Lake Erie water, we found new types of microcystins, the notorious toxins that were responsible for contaminating Toledo’s drinking water supply in 2014.

These novel molecules cannot be detected with traditional methods and show some signs of causing toxicity, though further studies are needed to confirm their human health effects.

A young woman and dog walk along a shoreline with blue-green algae in the water.
Blue-green algae blooms in freshwater, like this one near Toledo in 2014, can be harmful to humans, causing gastrointestinal symptoms, headache, fever and skin irritation. They can be lethal for pets.
Ty Wright for The Washington Post via Getty Images

We also found organisms responsible for producing saxitoxin, a potent neurotoxin that is well known for causing paralytic shellfish poisoning on the Pacific Coast of North America and elsewhere.

Saxitoxins have been detected at low concentrations in the Great Lakes for some time, but the recent discovery of hot spots of genes that make the toxin makes them an emerging concern.

Our research suggests warmer water temperatures could boost its production, which raises concerns that saxitoxin will become more prevalent with climate change. However, the controls on toxin production are complex, and more research is needed to test this hypothesis. Federal monitoring programs are essential for tracking and understanding emerging threats.

3. Should people worry about these blooms?

Harmful algal blooms are unsightly and smelly, making them a concern for recreation, property values and businesses. They can disrupt food webs and harm aquatic life, though a recent study suggested that their effects on the Lake Erie food web so far are not substantial.

But the biggest impact is from the toxins these algae produce that are harmful to humans and lethal to pets.

The toxins can cause acute health problems such as gastrointestinal symptoms, headache, fever and skin irritation. Dogs can die from ingesting lake water with harmful algal blooms. Emerging science suggests that long-term exposure to harmful algal blooms, for example over months or years, can cause or exacerbate chronic respiratory, cardiovascular and gastrointestinal problems and may be linked to liver cancers, kidney disease and neurological issues.

A large round structure offshore is surrounded by blue-green algae.
The water intake system for the city of Toledo, Ohio, is surrounded by an algae bloom in 2014. Toxic algae got into the water system, resulting in residents being warned not to touch or drink their tap water for three days.
AP Photo/Haraz N. Ghanbari

In addition to exposure through direct ingestion or skin contact, recent research also indicates that inhaling toxins that get into the air may harm health, raising concerns for coastal residents and boaters, but more research is needed to understand the risks.

The Toledo drinking water crisis of 2014 illustrated the vast potential for algal blooms to cause harm in the Great Lakes. Toxins infiltrated the drinking water system and were detected in processed municipal water, resulting in a three-day “do not drink” advisory. The episode affected residents, hospitals and businesses, and it ultimately cost the city an estimated US$65 million.

4. Blooms seem to be starting earlier in the year and lasting longer – why is that happening?

Warmer waters are extending the duration of the blooms.

In 2025, NOAA detected these toxins in Lake Erie on April 28, earlier than ever before. The 2022 bloom in Lake Erie persisted into November, which is rare if not unprecedented.

Scientific studies of western Lake Erie show that the potential cyanobacterial growth rate has increased by up to 30% and the length of the bloom season has expanded by up to a month from 1995 to 2022, especially in warmer, shallow waters. These results are consistent with our understanding of cyanobacterial physiology: Blooms like it hot – cyanobacteria grow faster at higher temperatures.

5. What can be done to reduce the likelihood of algal blooms in the future?

The best and perhaps only hope of reducing the size and occurrence of harmful algal blooms is to reduce the amount of nutrients reaching the Great Lakes.

In Lake Erie, where nutrients come primarily from agriculture, that means improving agricultural practices and restoring wetlands to reduce the amount of nutrients flowing off of farm fields and into the lake. Early indications suggest that Ohio’s H2Ohio program, which works with farmers to reduce runoff, is making some gains in this regard, but future funding for H2Ohio is uncertain.

In places like Lake Superior, where harmful algal blooms appear to be driven by climate change, the solution likely requires halting and reversing the rapid human-driven increase in greenhouse gases in the atmosphere.The Conversation

Gregory J. Dick, Professor of Biology, University of Michigan

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Toxic algae blooms are lasting longer than before in Lake Erie − why that’s a worry for people and pets appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

This article presents a neutral and factual overview of the harmful algal blooms in Lake Erie, relying on scientific data and expert analysis without promoting a political agenda. It references federal and academic research, explains causes like agricultural runoff and climate change, and discusses practical mitigation efforts such as agricultural practice improvements and wetland restoration. The tone is informative and balanced, avoiding partisan framing or ideological language. While it touches on environmental issues that can be politically charged, the article remains focused on evidence-based explanations and policy-neutral recommendations.

Continue Reading

The Conversation

The Vera C. Rubin Observatory will help astronomers investigate dark matter, continuing the legacy of its pioneering namesake

Published

on

theconversation.com – Samantha Thompson, Astronomy Curator, National Air and Space Museum, Smithsonian Institution – 2025-06-24 07:35:00


Everything visible in space, including stars and planets, accounts for only about 15% of the universe’s matter; the rest is dark matter, which is invisible but detectable through its gravitational effects. The Vera C. Rubin Observatory, starting its 10-year mission with the largest digital camera ever built, will capture detailed images of billions of galaxies to study dark matter’s role in the universe’s structure. Vera Rubin’s pioneering work in the 1960s revealed stars in galaxies move faster than visible matter predicts, suggesting unseen mass. Her legacy continues as astronomers use data to explore dark matter’s mysteries.

The Rubin Observatory is scheduled to release its first images in 2025.
RubinObs/NOIRLab/SLAC/NSF/DOE/AURA/B. Quint

Samantha Thompson, Smithsonian Institution

Everything in space – from the Earth and Sun to black holes – accounts for just 15% of all matter in the universe. The rest of the cosmos seems to be made of an invisible material astronomers call dark matter.

Astronomers know dark matter exists because its gravity affects other things, such as light. But understanding what dark matter is remains an active area of research.

With the release of its first images this month, the Vera C. Rubin Observatory has begun a 10-year mission to help unravel the mystery of dark matter. The observatory will continue the legacy of its namesake, a trailblazing astronomer who advanced our understanding of the other 85% of the universe.

As a historian of astronomy, I’ve studied how Vera Rubin’s contributions have shaped astrophysics. The observatory’s name is fitting, given that its data will soon provide scientists with a way to build on her work and shed more light on dark matter.

Wide view of the universe

From its vantage point in the Chilean Andes mountains, the Rubin Observatory will document everything visible in the southern sky. Every three nights, the observatory and its 3,200 megapixel camera will make a record of the sky.

This camera, about the size of a small car, is the largest digital camera ever built. Images will capture an area of the sky roughly 45 times the size of the full Moon. With a big camera with a wide field of view, Rubin will produce about five petabytes of data every year. That’s roughly 5,000 years’ worth of MP3 songs.

After weeks, months and years of observations, astronomers will have a time-lapse record revealing anything that explodes, flashes or moves – such as supernovas, variable stars or asteroids. They’ll also have the largest survey of galaxies ever made. These galactic views are key to investigating dark matter.

Galaxies are the key

Deep field images from the Hubble Space Telescope, the James Webb Space Telescope and others have visually revealed the abundance of galaxies in the universe. These images are taken with a long exposure time to collect the most light, so that even very faint objects show up.

Researchers now know that those galaxies aren’t randomly distributed. Gravity and dark matter pull and guide them into a structure that resembles a spider’s web or a tub of bubbles. The Rubin Observatory will expand upon these previous galactic surveys, increasing the precision of the data and capturing billions more galaxies.

In addition to helping structure galaxies throughout the universe, dark matter also distorts the appearance of galaxies through an effect referred to as gravitational lensing.

Light travels through space in a straight line − unless it gets close to something massive. Gravity bends light’s path, which distorts the way we see it. This gravitational lensing effect provides clues that could help astronomers locate dark matter. The stronger the gravity, the bigger the bend in light’s path.

Many galaxies, represented as bright dots, some blurred, against a dark background.
The white galaxies seen here are bound in a cluster. The gravity from the galaxies and the dark matter bends the light from the more distant galaxies, creating contorted and magnified images of them.
NASA, ESA, CSA and STScI

Discovering dark matter

For centuries, astronomers tracked and measured the motion of planets in the solar system. They found that all the planets followed the path predicted by Newton’s laws of motion, except for Uranus. Astronomers and mathematicians reasoned that if Newton’s laws are true, there must be some missing matter – another massive object – out there tugging on Uranus. From this hypothesis, they discovered Neptune, confirming Newton’s laws.

With the ability to see fainter objects in the 1930s, astronomers began tracking the motions of galaxies.

California Institute of Technology astronomer Fritz Zwicky coined the term dark matter in 1933, after observing galaxies in the Coma Cluster. He calculated the mass of the galaxies based on their speeds, which did not match their mass based on the number of stars he observed.

He suspected that the cluster could contain an invisible, missing matter that kept the galaxies from flying apart. But for several decades he lacked enough observational evidence to support his theory.

A woman adjusting a large piece of equipment.
Vera Rubin operates the Carnegie spectrograph at Kitt Peak National Observatory in Tucson.
Carnegie Institution for Science, CC BY

Enter Vera Rubin

In 1965, Vera Rubin became the first women hired onto the scientific staff at the Carnegie Institution’s Department of Terrestrial Magnetism in Washington, D.C.

She worked with Kent Ford, who had built an extremely sensitive spectrograph and was looking to apply it to a scientific research project. Rubin and Ford used the spectrograph to measure how fast stars orbit around the center of their galaxies.

In the solar system, where most of the mass is within the Sun at the center, the closest planet, Mercury, moves faster than the farthest planet, Neptune.

“We had expected that as stars got farther and farther from the center of their galaxy, they would orbit slower and slower,” Rubin said in 1992.

What they found in galaxies surprised them. Stars far from the galaxy’s center were moving just as fast as stars closer in.

“And that really leads to only two possibilities,” Rubin explained. “Either Newton’s laws don’t hold, and physicists and astronomers are woefully afraid of that … (or) stars are responding to the gravitational field of matter which we don’t see.”

Data piled up as Rubin created plot after plot. Her colleagues didn’t doubt her observations, but the interpretation remained a debate. Many people were reluctant to accept that dark matter was necessary to account for the findings in Rubin’s data.

Rubin continued studying galaxies, measuring how fast stars moved within them. She wasn’t interested in investigating dark matter itself, but she carried on with documenting its effects on the motion of galaxies.

A quarter with a woman looking upwards engraved onto it.
A U.S quarter honors Vera Rubin’s contributions to our understanding of dark matter.
United States Mint, CC BY

Vera Rubin’s legacy

Today, more people are aware of Rubin’s observations and contributions to our understanding of dark matter. In 2019, a congressional bill was introduced to rename the former Large Synoptic Survey Telescope to the Vera C. Rubin Observatory. In June 2025, the U.S. Mint released a quarter featuring Vera Rubin.

Rubin continued to accumulate data about the motions of galaxies throughout her career. Others picked up where she left off and have helped advance dark matter research over the past 50 years.

In the 1970s, physicist James Peebles and astronomers Jeremiah Ostriker and Amos Yahil created computer simulations of individual galaxies. They concluded, similarly to Zwicky, that there was not enough visible matter in galaxies to keep them from flying apart.

They suggested that whatever dark matter is − be it cold stars, black holes or some unknown particle − there could be as much as 10 times the amount of dark matter than ordinary matter in galaxies.

Throughout its 10-year run, the Rubin Observatory should give even more researchers the opportunity to add to our understanding of dark matter.The Conversation

Samantha Thompson, Astronomy Curator, National Air and Space Museum, Smithsonian Institution

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post The Vera C. Rubin Observatory will help astronomers investigate dark matter, continuing the legacy of its pioneering namesake appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The content is focused entirely on scientific topics related to astronomy, dark matter, and the legacy of astronomer Vera Rubin without engaging in political rhetoric or ideological framing. Its tone is neutral, educational, and fact-based, presenting information grounded in scientific research and historical context. As such, it does not lean toward any particular political bias but maintains an objective, centrist stance typical of purely scientific communication.

Continue Reading

The Conversation

3 years after abortion rights were overturned, contraception access is at risk

Published

on

theconversation.com – Cynthia H. Chuang, Professor of Medicine and Public Health Sciences, Penn State – 2025-06-23 07:39:00


On June 24, 2022, the U.S. Supreme Court’s Dobbs v. Jackson Women’s Health Organization decision overturned Roe v. Wade, ending federal abortion rights and shifting regulation to states. Since then, many states have imposed severe abortion restrictions, increasing demand for effective contraception like IUDs and sterilization. However, the decision has also led to diminished access to contraception due to abortion clinic closures, decreased healthcare provider availability, and threats to insurance coverage. Efforts to wrongly classify some contraceptives as abortifacients risk limiting coverage under Medicaid and the Affordable Care Act, endangering contraception access amid rising need.

Women living in states that ban or severely restrict abortion may be especially motivated to avoid unintended pregnancy.
Viktoriya Skorikova/Moment via Getty Images

Cynthia H. Chuang, Penn State and Carol S. Weisman, Penn State

On June 24, 2022, the U.S. Supreme Court decision in Dobbs v. Jackson Women’s Health Organization eliminated a nearly 50-year constitutional right to abortion and returned the authority to regulate abortion to the states.

The Dobbs ruling, which overturned Roe v. Wade, has vastly reshaped the national abortion landscape. Three years on, many states have severely restricted access to abortion care. But the decision has also had a less well-recognized outcome: It is increasingly jeopardizing access to contraception.

We are a physician scientist and a sociologist and health services researcher studying women’s health care and policy, including access to contraception. We see a worrisome situation emerging.

Even while the growing limits on abortion in the U.S. heighten the need for effective contraception, family planning providers are less available in many states, and health insurance coverage of some of the most effective types of contraception is at risk.

A growing demand for contraception

Abortion restrictions have proliferated around the country since the Dobbs decision. As of June 2025, 12 states have near-total abortion bans and 10 states ban abortion before 23 or 24 weeks of gestation, which is when a fetus is generally deemed viable. Of the remaining states, 19 restrict abortion after viability and nine states and Washington have no gestational limits.

It’s no surprise that women living in states that ban or severely restrict abortion may be especially motivated to avoid unintended pregnancy. Even planned pregnancies have grown riskier, with health care providers fearing legal repercussions for treating pregnancy-related medical emergencies such as miscarriages. Such concerns may in part explain emerging research that suggests the use of long-acting contraception such as intrauterine devices, or IUDs, and permanent contraception – namely, sterilization – are on the rise.

A national survey conducted in 2024 asked women ages 18 to 49 if they have changed their contraception practices “as a result of the Supreme Court overturning Roe v. Wade.” It found that close to 1 in 5 women began using contraception for the first time, switched to a more effective contraceptive method, received a sterilization procedure or purchased emergency contraception to keep on hand.

The Supreme Court’s decision in Dobbs reshaped the landscape of abortion access across the U.S.

A study in Ohio hospitals found a nearly 16% increase in women choosing long-acting contraception methods or sterilization in the six months after the Dobbs decision, and a 33% jump in men receiving vasectomies. Another study, which looked at both female and male sterilization in academic medical centers across the country, also reported an uptick in sterilization procedures for young adults ages 18 to 30 after the Dobbs decision, through 2023.

A loss of contraception providers

Ironically, banning or severely restricting abortion statewide may also diminish capacity to provide contraception.

To date, there is no compelling evidence that OB-GYN doctors are leaving states with strict abortion laws in significant numbers. One study found that states with severe abortion restrictions saw a 4.2% decrease in such practitioners compared with states without abortion restrictions.

However, the Association of American Medical Colleges reports declining applications to residency training programs located in states that have abortion bans – not just for OB-GYN training programs, but for residency training of all specialties. This drop suggests that doctors may be overall less likely to train in states that restrict medical practice. And given that physicians often stay on to practice in the states where they do their training, it may point to a long-term decline in physicians in those states.

But the most significant drop in contraceptive services likely comes from the closure of abortion clinics in states with the most restrictive abortion policies. That’s because such clinics generally provide a wide range of reproductive services, including contraception. The 12 states with near-total abortion bans had 57 abortion clinics in 2020, all of which were closed as of March 2024. One study reported a 4.1% decline in oral contraceptives dispensed in those states.

Contraception under threat

The Dobbs decision has also encouraged ongoing efforts to incorrectly redefine some of the most effective contraceptives as medications that cause abortion. These efforts target emergency contraceptive pills, known as Plan B over-the-counter and Ella by prescription, as well as certain IUDs. Emergency contraceptive pills are up to 98% effective at preventing pregnancy after unprotected sex, and IUDs are 99% effective.

Neither method terminates a pregnancy, which by definition begins when a fertilized egg implants in the uterus. Instead, emergency contraceptive pills prevent an egg from being released from the ovaries, while IUDs, depending on the type, prevent sperm from fertilizing an egg or prevent an egg from implanting in the uterus.

Conflating contraception and abortion spreads misinformation and causes confusion. People who believe that certain types of contraception cause abortions may be dissuaded from using those methods and rely on less effective methods. What’s more, it may affect health insurance coverage.

Medicaid, which provides health insurance for low-income children and adults, has been required to cover family planning services at no cost to patients since 1972. Since 2012, the Affordable Care Act has required private health insurers to cover certain women’s health preventive services at no cost to patients, including the full-range of contraceptives approved by the Food and Drug Administration.

According to our research, the insurance coverage required by the Affordable Care Act has increased use of IUDs, which can be prohibitively expensive when paid out of pocket. But if IUDs and emergency contraceptive pills were reclassified as interventions that induce abortion, they likely would not be covered by Medicaid or the Affordable Care Act, since neither type of health insurance requires coverage for abortion care. Thus, access to some of the most effective contraceptive methods could be jeopardized at a time when the right to terminate an unintended or nonviable pregnancy has been rolled back in much of the country.

Indeed, Project 2025, the conservative policy agenda that the Trump administration appears to be following, specifically calls for removing Ella from the Affordable Care Act contraception coverage mandate because it is a “potential abortifacient.” And politicians in multiple states have expressed support for the idea of restricting these contraceptive methods, as well as contraception more broadly.

On the third anniversary of the Dobbs decision, it is clear that its ripple effects include threats to contraception. Considering that contraception use is almost universal among women in their reproductive years, in our view these threats should be taken seriously.The Conversation

Cynthia H. Chuang, Professor of Medicine and Public Health Sciences, Penn State and Carol S. Weisman, Distinguished Professor Emerita of Public Health Sciences, Penn State

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post 3 years after abortion rights were overturned, contraception access is at risk appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Center-Left

This article presents a viewpoint consistent with Center-Left perspectives by emphasizing the negative impacts of the Dobbs decision on abortion and contraception access. It highlights concerns about reduced reproductive rights, healthcare provider shortages, and efforts to restrict or redefine contraception, portraying these developments as threats to women’s health. The language frames the Dobbs ruling and related policies critically, focusing on public health consequences and policy setbacks, which aligns with progressive and moderate Democratic-leaning concerns. While it is evidence-based and cites research, the framing and selection of issues suggest a bias toward protecting reproductive rights and opposing restrictive abortion policies.

Continue Reading

Trending