Connect with us

The Conversation

AI is transforming weather forecasting − and that could be a game changer for farmers around the world

Published

on

theconversation.com – Paul Winters, Professor of Sustainable Development, University of Notre Dame – 2025-09-03 07:30:00


Climate change intensifies weather risks for farmers, affecting crop yields and incomes, especially in low- and middle-income countries lacking accurate forecasts due to costly traditional models. AI-powered weather forecasting offers a breakthrough by delivering accurate, localized predictions rapidly and inexpensively, using far less computational power than physics-based systems. Advanced AI models like Pangu-Weather and GraphCast now match or surpass traditional forecasts, enabling timely, high-resolution weather guidance on standard computers. To be effective, AI forecasts must be tailored to local agricultural needs and disseminated through accessible channels. Supported by organizations such as AIM for Scale, AI forecasting can empower developing countries to adapt farming practices and improve resilience amid climate change.

Weather forecasts help farmers figure out when to plant, where to use fertilizer and much more.
Maitreya Shah/Studio India

Paul Winters, University of Notre Dame and Amir Jina, University of Chicago

For farmers, every planting decision carries risks, and many of those risks are increasing with climate change. One of the most consequential is weather, which can damage crop yields and livelihoods. A delayed monsoon, for example, can force a rice farmer in South Asia to replant or switch crops altogether, losing both time and income.

Access to reliable, timely weather forecasts can help farmers prepare for the weeks ahead, find the best time to plant or determine how much fertilizer will be needed, resulting in better crop yields and lower costs.

Yet, in many low- and middle-income countries, accurate weather forecasts remain out of reach, limited by the high technology costs and infrastructure demands of traditional forecasting models.

A new wave of AI-powered weather forecasting models has the potential to change that.

A farmer in a field holds a dried out corn stalk.
A farmer holds dried-up maize stalks in his field in Zimbabwe on March 22, 2024. A drought had caused widespread water shortages and crop failures.
AP Photo/Tsvangirayi Mukwazhi

By using artificial intelligence, these models can deliver accurate, localized predictions at a fraction of the computational cost of conventional physics-based models. This makes it possible for national meteorological agencies in developing countries to provide farmers with the timely, localized information about changing rainfall patterns that the farmers need.

The challenge is getting this technology where it’s needed.

Why AI forecasting matters now

The physics-based weather prediction models used by major meteorological centers around the world are powerful but costly. They simulate atmospheric physics to forecast weather conditions ahead, but they require expensive computing infrastructure. The cost puts them out of reach for most developing countries.

Moreover, these models have mainly been developed by and optimized for northern countries. They tend to focus on temperate, high-income regions and pay less attention to the tropics, where many low- and middle-income countries are located.

A major shift in weather models began in 2022 as industry and university researchers developed deep learning models that could generate accurate short- and medium-range forecasts for locations around the globe up to two weeks ahead.

These models worked at speeds several orders of magnitude faster than physics-based models, and they could run on laptops instead of supercomputers. Newer models, such as Pangu-Weather and GraphCast, have matched or even outperformed leading physics-based systems for some predictions, such as temperature.

A woman in a red sari tosses pellets into a rice field.
A farmer distributes fertilizer in India.
EqualStock IN from Pexels

AI-driven models require dramatically less computing power than the traditional systems.

While physics-based systems may need thousands of CPU hours to run a single forecast cycle, modern AI models can do so using a single GPU in minutes once the model has been trained. This is because the intensive part of the AI model training, which learns relationships in the climate from data, can use those learned relationships to produce a forecast without further extensive computation – that’s a major shortcut. In contrast, the physics-based models need to calculate the physics for each variable in each place and time for every forecast produced.

While training these models from physics-based model data does require significant upfront investment, once the AI is trained, the model can generate large ensemble forecasts — sets of multiple forecast runs — at a fraction of the computational cost of physics-based models.

Even the expensive step of training an AI weather model shows considerable computational savings. One study found the early model FourCastNet could be trained in about an hour on a supercomputer. That made its time to presenting a forecast thousands of times faster than state-of-the-art, physics-based models.

The result of all these advances: high-resolution forecasts globally within seconds on a single laptop or desktop computer.

Research is also rapidly advancing to expand the use of AI for forecasts weeks to months ahead, which helps farmers in making planting choices. AI models are already being tested for improving extreme weather prediction, such as for extratropical cyclones and abnormal rainfall.

Tailoring forecasts for real-world decisions

While AI weather models offer impressive technical capabilities, they are not plug-and-play solutions. Their impact depends on how well they are calibrated to local weather, benchmarked against real-world agricultural conditions, and aligned with the actual decisions farmers need to make, such as what and when to plant, or when drought is likely.

To unlock its full potential, AI forecasting must be connected to the people whose decisions it’s meant to guide.

That’s why groups such as AIM for Scale, a collaboration we work with as researchers in public policy and sustainability, are helping governments to develop AI tools that meet real-world needs, including training users and tailoring forecasts to farmers’ needs. International development institutions and the World Meteorological Organization are also working to expand access to AI forecasting models in low- and middle-income countries.

A man sells grain in Dawanau International Market in Kano, Nigeria on July 14, 2023.
Many low-income countries in Africa face harsh effects from climate change, from severe droughts to unpredictable rain and flooding. The shocks worsen conflict and upend livelihoods.
AP Photo/Sunday Alamba

AI forecasts can be tailored to context-specific agricultural needs, such as identifying optimal planting windows, predicting dry spells or planning pest management. Disseminating those forecasts through text messages, radio, extension agents or mobile apps can then help reach farmers who can benefit. This is especially true when the messages themselves are constantly tested and improved to ensure they meet the farmers’ needs.

A recent study in India found that when farmers there received more accurate monsoon forecasts, they made more informed decisions about what and how much to plant – or whether to plant at all – resulting in better investment outcomes and reduced risk.

A new era in climate adaptation

AI weather forecasting has reached a pivotal moment. Tools that were experimental just five years ago are now being integrated into government weather forecasting systems. But technology alone won’t change lives.

With support, low- and middle-income countries can build the capacity to generate, evaluate and act on their own forecasts, providing valuable information to farmers that has long been missing in weather services.The Conversation

Paul Winters, Professor of Sustainable Development, University of Notre Dame and Amir Jina, Assistant Professor of Public Policy, University of Chicago

This article is republished from The Conversation under a Creative Commons license. Read the original article.

A farmer holds dried-up maize stalks in his field in Zimbabwe on March 22, 2024. A drought had caused widespread water shortages and crop failures.
AP Photo/Tsvangirayi Mukwazhi

By using artificial intelligence, these models can deliver accurate, localized predictions at a fraction of the computational cost of conventional physics-based models. This makes it possible for national meteorological agencies in developing countries to provide farmers with the timely, localized information about changing rainfall patterns that the farmers need.

The challenge is getting this technology where it’s needed.

Why AI forecasting matters now

The physics-based weather prediction models used by major meteorological centers around the world are powerful but costly. They simulate atmospheric physics to forecast weather conditions ahead, but they require expensive computing infrastructure. The cost puts them out of reach for most developing countries.

Moreover, these models have mainly been developed by and optimized for northern countries. They tend to focus on temperate, high-income regions and pay less attention to the tropics, where many low- and middle-income countries are located.

A major shift in weather models began in 2022 as industry and university researchers developed deep learning models that could generate accurate short- and medium-range forecasts for locations around the globe up to two weeks ahead.

These models worked at speeds several orders of magnitude faster than physics-based models, and they could run on laptops instead of supercomputers. Newer models, such as Pangu-Weather and GraphCast, have matched or even outperformed leading physics-based systems for some predictions, such as temperature.

A woman in a red sari tosses pellets into a rice field.

A farmer distributes fertilizer in India.
EqualStock IN from Pexels

AI-driven models require dramatically less computing power than the traditional systems.

While physics-based systems may need thousands of CPU hours to run a single forecast cycle, modern AI models can do so using a single GPU in minutes once the model has been trained. This is because the intensive part of the AI model training, which learns relationships in the climate from data, can use those learned relationships to produce a forecast without further extensive computation – that’s a major shortcut. In contrast, the physics-based models need to calculate the physics for each variable in each place and time for every forecast produced.

While training these models from physics-based model data does require significant upfront investment, once the AI is trained, the model can generate large ensemble forecasts — sets of multiple forecast runs — at a fraction of the computational cost of physics-based models.

Even the expensive step of training an AI weather model shows considerable computational savings. One study found the early model FourCastNet could be trained in about an hour on a supercomputer. That made its time to presenting a forecast thousands of times faster than state-of-the-art, physics-based models.

The result of all these advances: high-resolution forecasts globally within seconds on a single laptop or desktop computer.

Research is also rapidly advancing to expand the use of AI for forecasts weeks to months ahead, which helps farmers in making planting choices. AI models are already being tested for improving extreme weather prediction, such as for extratropical cyclones and abnormal rainfall.

Tailoring forecasts for real-world decisions

While AI weather models offer impressive technical capabilities, they are not plug-and-play solutions. Their impact depends on how well they are calibrated to local weather, benchmarked against real-world agricultural conditions, and aligned with the actual decisions farmers need to make, such as what and when to plant, or when drought is likely.

To unlock its full potential, AI forecasting must be connected to the people whose decisions it’s meant to guide.

That’s why groups such as AIM for Scale, a collaboration we work with as researchers in public policy and sustainability, are helping governments to develop AI tools that meet real-world needs, including training users and tailoring forecasts to farmers’ needs. International development institutions and the World Meteorological Organization are also working to expand access to AI forecasting models in low- and middle-income countries.

A man sells grain in Dawanau International Market in Kano, Nigeria on July 14, 2023.

Many low-income countries in Africa face harsh effects from climate change, from severe droughts to unpredictable rain and flooding. The shocks worsen conflict and upend livelihoods.
AP Photo/Sunday Alamba

AI forecasts can be tailored to context-specific agricultural needs, such as identifying optimal planting windows, predicting dry spells or planning pest management. Disseminating those forecasts through text messages, radio, extension agents or mobile apps can then help reach farmers who can benefit. This is especially true when the messages themselves are constantly tested and improved to ensure they meet the farmers’ needs.

A recent study in India found that when farmers there received more accurate monsoon forecasts, they made more informed decisions about what and how much to plant – or whether to plant at all – resulting in better investment outcomes and reduced risk.

A new era in climate adaptation

AI weather forecasting has reached a pivotal moment. Tools that were experimental just five years ago are now being integrated into government weather forecasting systems. But technology alone won’t change lives.

With support, low- and middle-income countries can build the capacity to generate, evaluate and act on their own forecasts, providing valuable information to farmers that has long been missing in weather services.

Read More

The post AI is transforming weather forecasting − and that could be a game changer for farmers around the world appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The content presents a factual and balanced discussion on the use of AI in weather forecasting to aid farmers, particularly in low- and middle-income countries. It emphasizes technological innovation, international collaboration, and practical benefits without promoting a specific political ideology. The focus on climate change and development is handled in a neutral, solution-oriented manner, reflecting a centrist perspective that values science and global cooperation.

The Conversation

What is AI slop? A technologist explains this new and largely unwelcome form of online content

Published

on

theconversation.com – Adam Nemeroff, Assistant Provost for Innovations in Learning, Teaching, and Technology, Quinnipiac University – 2025-09-02 07:33:00


AI slop refers to low- to mid-quality content—images, videos, audio, text—generated quickly and cheaply by AI tools, often without accuracy. It floods social media and platforms like YouTube, Spotify, and Wikipedia, displacing higher-quality, human-created content. Examples include AI-generated bands, viral images, and videos that exploit internet attention economies for profit. AI slop harms artists by reducing job opportunities and spreads misinformation, as seen during Hurricane Helene with fake images used politically. Platforms struggle to moderate this content, threatening information reliability. Users can report or flag harmful AI slop, but it increasingly degrades the online media environment.

This AI-generated image spread far and wide in the wake of Hurricane Helene in 2024.
AI-generated image circulated on social media

Adam Nemeroff, Quinnipiac University

You’ve probably encountered images in your social media feeds that look like a cross between photographs and computer-generated graphics. Some are fantastical – think Shrimp Jesus – and some are believable at a quick glance – remember the little girl clutching a puppy in a boat during a flood?

These are examples of AI slop, low- to mid-quality content – video, images, audio, text or a mix – created with AI tools, often with little regard for accuracy. It’s fast, easy and inexpensive to make this content. AI slop producers typically place it on social media to exploit the economics of attention on the internet, displacing higher-quality material that could be more helpful.

AI slop has been increasing over the past few years. As the term “slop” indicates, that’s generally not good for people using the internet.

AI slop’s many forms

The Guardian published an analysis in July 2025 examining how AI slop is taking over YouTube’s fastest-growing channels. The journalists found that nine out of the top 100 fastest-growing channels feature AI-generated content like zombie football and cat soap operas.

This song, allegedly recorded by a band called The Velvet Sundown, was AI-generated.

Listening to Spotify? Be skeptical of that new band, The Velvet Sundown, that appeared on the streaming service with a creative backstory and derivative tracks. It’s AI-generated.

In many cases, people submit AI slop that’s just good enough to attract and keep users’ attention, allowing the submitter to profit from platforms that monetize streaming and view-based content.

The ease of generating content with AI enables people to submit low-quality articles to publications. Clarkesworld, an online science fiction magazine that accepts user submissions and pays contributors, stopped taking new submissions in 2024 because of the flood of AI-generated writing it was getting.

These aren’t the only places where this happens — even Wikipedia is dealing with AI-generated low-quality content that strains its entire community moderation system. If the organization is not successful in removing it, a key information resource people depend on is at risk.

This episode of ‘Last Week Tonight with John Oliver’ delves into AI slop. (NSFW)

Harms of AI slop

AI-driven slop is making its way upstream into people’s media diets as well. During Hurricane Helene, opponents of President Joe Biden cited AI-generated images of a displaced child clutching a puppy as evidence of the administration’s purported mishandling of the disaster response. Even when it’s apparent that content is AI-generated, it can still be used to spread misinformation by fooling some people who briefly glance at it.

AI slop also harms artists by causing job and financial losses and crowding out content made by real creators. The placement of this lower-quality AI-generated content is often not distinguished by the algorithms that drive social media consumption, and it displace entire classes of creators who previously made their livelihood from online content.

Wherever it’s enabled, you can flag content that’s harmful or problematic. On some platforms, you can add community notes to the content to provide context. For harmful content, you can try to report it.

Along with forcing us to be on guard for deepfakes and “inauthentic” social media accounts, AI is now leading to piles of dreck degrading our media environment. At least there’s a catchy name for it.The Conversation

Adam Nemeroff, Assistant Provost for Innovations in Learning, Teaching, and Technology, Quinnipiac University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post What is AI slop? A technologist explains this new and largely unwelcome form of online content appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The content presents a balanced and factual discussion about the rise of low-quality AI-generated content (“AI slop”) and its impacts on media, misinformation, and creators. It references examples involving both political figures and general media platforms without taking a partisan stance or promoting a specific political agenda. The focus is on the technological and social implications rather than ideological viewpoints, resulting in a centrist perspective.

Continue Reading

The Conversation

Adding more green space to a campus is a simple, cheap and healthy way to help millions of stressed and depressed college students

Published

on

theconversation.com – Chanam Lee, Professor of Landscape Architecture and Urban Planning, Texas A&M University – 2025-09-02 07:32:00


College students face significant stress from academics, social pressures, and finances, contributing to rising anxiety, depression, and suicide rates. The 2024 National College Health Assessment found 30% of students report anxiety harming academics, with 20% at risk of severe distress. While counseling services have expanded, creating healthier campus environments by increasing green spaces offers another solution. Research, including a Texas A&M study, shows access to greenery, nature views, and walkable paths reduces stress, improves mood, and fosters belonging. Outdoor areas like Aggie Park provide mental health benefits and encourage physical activity, which lowers anxiety and depression. Smaller schools and those with religious affiliations also report better student mental health. Enhancing campus green spaces is a cost-effective way to support student well-being and academic success.

Green space at schools can benefit generations of students.
AzmanL/E+ via Getty Images

Chanam Lee, Texas A&M University; Li Deng, Texas A&M University, and Yizhen Ding, Texas A&M University

Stress on college students can be palpable, and it hits them from every direction: academic challenges, social pressures and financial burdens, all intermingled with their first taste of independence. It’s part of the reason why anxiety and depression are common among the 19 million students now enrolled in U.S. colleges and universities, and why incidents of suicide and suicidal ideation are rising.

In the 2024 National College Health Assessment Report, 30% of the 30,000 students surveyed said anxiety negatively affected their academic performance, with 20% at risk for symptoms that suggest severe psychological distress, such as feelings of sadness, nervousness and hopelessness. No wonder the demand for mental health services has been increasing for about a decade.

Many schools have rightfully responded to this demand by offering students more counseling. That is important, of course, but there’s another approach that could help alleviate the need for counseling: Creating a campus environment that promotes health. Simply put, add more green space.

We are scholars who study the impact that the natural environment has on students, particularly in the place where they spend much of their time – the college campus. Decades of research show that access to green spaces can lower stress and foster a stronger sense of belonging – benefits that are particularly critical for students navigating the pressures of higher education.

Making campuses green

In 2020, our research team at Texas A&M University launched a Green Campus Initiative to promote a healthier campus environment. Our goal was to find ways to design, plan and manage such an environment by developing evidence-based strategies.

Our survey of more than 400 Texas A&M students showed that abundant greenery, nature views and quality walking paths can help with mental health issues.

More than 80% of the students we surveyed said they already have their favorite outdoor places on campus. One of them is Aggie Park, 20 acres of green space with exercise trails, walking and bike paths and rocking chairs by a lake. Many students noted that such green spaces are a break from daily routines, a positive distraction from negative thoughts and a place to exercise.

Our survey confirms other research that shows students who spend time outdoors – particularly in places with mature trees, open fields, parks, gardens and water – report better moods and lower stress. More students are physically active when on a campus with good walkability and plenty of sidewalks, trails and paths. Just the physical activity itself is linked to many mental health benefits, including reduced anxiety and depression.

Outdoor seating, whether rocking chairs or park benches, also has numerous benefits. More time spent talking to others is one of them, but what might be surprising is that enhanced reading performance is another. More trees and plants mean more shaded areas, particularly during hot summers, and that too encourages students to spend more time outside and be active.

A bird’s eye view of the turquoise lakes and greenery at Aggie Park.
Aggie Park, a designated green space on the campus of Texas A&M University, opened in September 2022.
Texas A&M University

Less anxiety, better academic performance

In short, the surrounding environment matters, but not just for college students or those living or working on a campus. Across different groups and settings, research shows that being near green spaces reduces stress, anxiety and depression.

Even a garden or tree-lined street helps.

In Philadelphia, researchers transformed 110 vacant lot clusters into green spaces. That led to improvements in mental health for residents living nearby. Those using the green spaces reported lower levels of stress and anxiety, but just viewing nature from a window was helpful too.

Our colleagues discovered similar findings when conducting a randomized trial with high school students who took a test before and after break periods in classrooms with different window views: no window, a window facing a building or parking lot, or a window overlooking green landscapes. Students with views of greenery recovered faster from mental fatigue and performed significantly better on attention tasks.

It’s still unclear exactly why green spaces are good places to go when experiencing stress and anxiety; nevertheless, it is clear that spending time in nature is beneficial for mental well-being.

Small can be better

It’s critical to note that enhancing your surroundings isn’t just about green space. Other factors play a role. After analyzing data from 13 U.S. universities, our research shows that school size, locale, region and religious affiliation all make a difference and are significant predictors of mental health.

Specifically, we found that students at schools with smaller populations, schools in smaller communities, schools in the southern U.S. or schools with religious affiliations generally had better mental health than students at other schools. Those students had less stress, anxiety and depression, and a lower risk of suicide when compared with peers at larger universities with more than 5,000 students, schools in urban areas, institutions in the Midwest and West or those without religious ties.

No one can change their genes or demographics, but an environment can always be modified – and for the better. For a relatively cheap investment, more green space at a school offers long-term benefits to generations of students. After all, a campus is more than just buildings. No doubt, the learning that takes place inside them educates the mind. But what’s on the outside, research shows, nurtures the soul.The Conversation

Chanam Lee, Professor of Landscape Architecture and Urban Planning, Texas A&M University; Li Deng, Ph.D Candidate in Landscape Architecture & Urban Planning, Texas A&M University, and Yizhen Ding, Ph.D. Candidate in Landscape Architecture & Urban Planning, Texas A&M University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Aggie Park, a designated green space on the campus of Texas A&M University, opened in September 2022.
Texas A&M University

Less anxiety, better academic performance

In short, the surrounding environment matters, but not just for college students or those living or working on a campus. Across different groups and settings, research shows that being near green spaces reduces stress, anxiety and depression.

Even a garden or tree-lined street helps.

In Philadelphia, researchers transformed 110 vacant lot clusters into green spaces. That led to improvements in mental health for residents living nearby. Those using the green spaces reported lower levels of stress and anxiety, but just viewing nature from a window was helpful too.

Our colleagues discovered similar findings when conducting a randomized trial with high school students who took a test before and after break periods in classrooms with different window views: no window, a window facing a building or parking lot, or a window overlooking green landscapes. Students with views of greenery recovered faster from mental fatigue and performed significantly better on attention tasks.

It’s still unclear exactly why green spaces are good places to go when experiencing stress and anxiety; nevertheless, it is clear that spending time in nature is beneficial for mental well-being.

Small can be better

It’s critical to note that enhancing your surroundings isn’t just about green space. Other factors play a role. After analyzing data from 13 U.S. universities, our research shows that school size, locale, region and religious affiliation all make a difference and are significant predictors of mental health.

Specifically, we found that students at schools with smaller populations, schools in smaller communities, schools in the southern U.S. or schools with religious affiliations generally had better mental health than students at other schools. Those students had less stress, anxiety and depression, and a lower risk of suicide when compared with peers at larger universities with more than 5,000 students, schools in urban areas, institutions in the Midwest and West or those without religious ties.

No one can change their genes or demographics, but an environment can always be modified – and for the better. For a relatively cheap investment, more green space at a school offers long-term benefits to generations of students. After all, a campus is more than just buildings. No doubt, the learning that takes place inside them educates the mind. But what’s on the outside, research shows, nurtures the soul.

Read More

The post Adding more green space to a campus is a simple, cheap and healthy way to help millions of stressed and depressed college students appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The content focuses on mental health challenges faced by college students and advocates for increasing green spaces on campuses as a way to improve well-being. It relies on scientific research and evidence-based findings without promoting any particular political ideology or partisan agenda. The discussion is centered on public health and environmental design, topics that generally transcend traditional political divides, resulting in a neutral, centrist perspective.

Continue Reading

The Conversation

AI has a hidden water cost − here’s how to calculate yours

Published

on

theconversation.com – Leo S. Lo, Dean of Libraries; Advisor to the Provost for AI Literacy; Professor of Education, University of Virginia – 2025-09-01 07:35:00


Artificial intelligence systems consume significant water—up to 500 milliliters per short interaction—primarily for cooling data center servers and generating electricity. Water use varies greatly by location and climate; for example, dry, hot areas rely heavily on evaporative cooling, which consumes more water. Innovations like immersion cooling and Microsoft’s zero-water cooling design promise to reduce consumption but aren’t yet widespread. AI’s water footprint also depends on the model’s complexity, with newer models like GPT-5 using considerably more water than efficient ones. Despite large aggregate usage, AI’s water consumption remains small compared to everyday activities like lawn watering. Transparency and efficiency improvements are crucial for balancing innovation with sustainability.

How many AI queries does it take to use up a regular plastic water bottle’s worth of water?
kieferpix/iStock/Getty Images Plus

Leo S. Lo, University of Virginia

Artificial intelligence systems are thirsty, consuming as much as 500 milliliters of water – a single-serving water bottle – for each short conversation a user has with the GPT-3 version of OpenAI’s ChatGPT system. They use roughly the same amount of water to draft a 100-word email message.

That figure includes the water used to cool the data center’s servers and the water consumed at the power plants generating the electricity to run them.

But the study that calculated those estimates also pointed out that AI systems’ water usage can vary widely, depending on where and when the computer answering the query is running.

To me, as an academic librarian and professor of education, understanding AI is not just about knowing how to write prompts. It also involves understanding the infrastructure, the trade-offs, and the civic choices that surround AI.

Many people assume AI is inherently harmful, especially given headlines calling out its vast energy and water footprint. Those effects are real, but they’re only part of the story.

When people move from seeing AI as simply a resource drain to understanding its actual footprint, where the effects come from, how they vary, and what can be done to reduce them, they are far better equipped to make choices that balance innovation with sustainability.

2 hidden streams

Behind every AI query are two streams of water use.

The first is on-site cooling of servers that generate enormous amounts of heat. This often uses evaporative cooling towers – giant misters that spray water over hot pipes or open basins. The evaporation carries away heat, but that water is removed from the local water supply, such as a river, a reservoir or an aquifer. Other cooling systems may use less water but more electricity.

The second stream is used by the power plants generating the electricity to power the data center. Coal, gas and nuclear plants use large volumes of water for steam cycles and cooling.

Hydropower also uses up significant amounts of water, which evaporates from reservoirs. Concentrated solar plants, which run more like traditional steam power stations, can be water-intensive if they rely on wet cooling.

By contrast, wind turbines and solar panels use almost no water once built, aside from occasional cleaning.

Large concrete towers emit vapor into the atmosphere.
Cooling towers, like these at a power plant in Florida, use water evaporation to lower the temperature of equipment.
Paul Hennessy/SOPA Images/LightRocket via Getty Images

Climate and timing matter

Water use shifts dramatically with location. A data center in cool, humid Ireland can often rely on outside air or chillers and run for months with minimal water use. By contrast, a data center in Arizona in July may depend heavily on evaporative cooling. Hot, dry air makes that method highly effective, but it also consumes large volumes of water, since evaporation is the mechanism that removes heat.

Timing matters too. A University of Massachusetts Amherst study found that a data center might use only half as much water in winter as in summer. And at midday during a heat wave, cooling systems work overtime. At night, demand is lower.

Newer approaches offer promising alternatives. For instance, immersion cooling submerges servers in fluids that don’t conduct electricity, such as synthetic oils, reducing water evaporation almost entirely.

And a new design from Microsoft claims to use zero water for cooling, by circulating a special liquid through sealed pipes directly across computer chips. The liquid absorbs heat and then releases it through a closed-loop system without needing any evaporation. The data centers would still use some potable water for restrooms and other staff facilities, but cooling itself would no longer draw from local water supplies.

These solutions are not yet mainstream, however, mainly because of cost, maintenance complexity and the difficulty of converting existing data centers to new systems. Most operators rely on evaporative systems.

A simple skill you can use

The type of AI model being queried matters, too. That’s because of the different levels of complexity and the hardware and amount of processor power they require. Some models may use far more resources than others. For example, one study found that certain models can consume over 70 times more energy and water than ultra‑efficient ones.

You can estimate AI’s water footprint yourself in just three steps, with no advanced math required.

Step 1 – Look for credible research or official disclosures. Independent analyses estimate that a medium-length GPT-5 response, which is about 150 to 200 words of output, or roughly 200 to 300 tokens, uses about 19.3 watt-hours. A response of similar length from GPT-4o uses about 1.75 watt-hours.

Step 2 – Use a practical estimate for the amount of water per unit of electricity, combining the usage for cooling and for power.

Independent researchers and industry reports suggest that a reasonable range today is about 1.3 to 2.0 milliliters per watt-hour. The lower end reflects efficient facilities that use modern cooling and cleaner grids. The higher end represents more typical sites.

Step 3 – Now it’s time to put the pieces together. Take the energy number you found in Step 1 and multiply it by the water factor from Step 2. That gives you the water footprint of a single AI response.

Here’s the one-line formula you’ll need:

Energy per prompt (watt-hours) × Water factor (milliliters per watt-hour) = Water per prompt (in milliliters)

For a medium-length query to GPT-5, that calculation should use the figures of 19.3 watt-hours and 2 milliliters per watt-hour. 19.3 x 2 = 39 milliliters of water per response.

For a medium-length query to GPT-4o, the calculation is 1.75 watt-hours x 2 milliliters per watt-hour = 3.5 milliliters of water per response.

If you assume the data centers are more efficient, and use 1.3 milliliters per watt-hour, the numbers drop: about 25 milliliters for GPT-5 and 2.3 milliliters for GPT-4o.

A recent Google technical report said a median text prompt to its Gemini system uses just 0.24 watt-hours of electricity and about 0.26 milliliters of water – roughly the volume of five drops. However, the report does not say how long that prompt is, so it can’t be compared directly with GPT water usage.

Those different estimates – ranging from 0.26 milliliters to 39 milliliters – demonstrate how much the effects of efficiency, AI model and power-generation infrastructure all matter.

Comparisons can add context

To truly understand how much water these queries use, it can be helpful to compare them to other familiar water uses.

When multiplied by millions, AI queries’ water use adds up. OpenAI reports about 2.5 billion prompts per day. That figure includes queries to its GPT-4o, GPT-4 Turbo, GPT-3.5 and GPT-5 systems, with no public breakdown of how many queries are issued to each particular model.

Using independent estimates and Google’s official reporting gives a sense of the possible range:

  • All Google Gemini median prompts: about 650,000 liters per day.
  • All GPT 4o medium prompts: about 8.8 million liters per day.
  • All GPT 5 medium prompts: about 97.5 million liters per day.
A small black spigot spews a stream of water over a green grass lawn.
Americans use lots of water to keep gardens and lawns looking fresh.
James Carbone/Newsday RM via Getty Images

For comparison, Americans use about 34 billion liters per day watering residential lawns and gardens. One liter is about one-quarter of a gallon.

Generative AI does use water, but – at least for now – its daily totals are small compared with other common uses such as lawns, showers and laundry.

But its water demand is not fixed. Google’s disclosure shows what is possible when systems are optimized, with specialized chips, efficient cooling and smart workload management. Recycling water and locating data centers in cooler, wetter regions can help, too.

Transparency matters, as well: When companies release their data, the public, policymakers and researchers can see what is achievable and compare providers fairly.The Conversation

Leo S. Lo, Dean of Libraries; Advisor to the Provost for AI Literacy; Professor of Education, University of Virginia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Cooling towers, like these at a power plant in Florida, use water evaporation to lower the temperature of equipment.
Paul Hennessy/SOPA Images/LightRocket via Getty Images

Climate and timing matter

Water use shifts dramatically with location. A data center in cool, humid Ireland can often rely on outside air or chillers and run for months with minimal water use. By contrast, a data center in Arizona in July may depend heavily on evaporative cooling. Hot, dry air makes that method highly effective, but it also consumes large volumes of water, since evaporation is the mechanism that removes heat.

Timing matters too. A University of Massachusetts Amherst study found that a data center might use only half as much water in winter as in summer. And at midday during a heat wave, cooling systems work overtime. At night, demand is lower.

Newer approaches offer promising alternatives. For instance, immersion cooling submerges servers in fluids that don’t conduct electricity, such as synthetic oils, reducing water evaporation almost entirely.

And a new design from Microsoft claims to use zero water for cooling, by circulating a special liquid through sealed pipes directly across computer chips. The liquid absorbs heat and then releases it through a closed-loop system without needing any evaporation. The data centers would still use some potable water for restrooms and other staff facilities, but cooling itself would no longer draw from local water supplies.

These solutions are not yet mainstream, however, mainly because of cost, maintenance complexity and the difficulty of converting existing data centers to new systems. Most operators rely on evaporative systems.

A simple skill you can use

The type of AI model being queried matters, too. That’s because of the different levels of complexity and the hardware and amount of processor power they require. Some models may use far more resources than others. For example, one study found that certain models can consume over 70 times more energy and water than ultra‑efficient ones.

You can estimate AI’s water footprint yourself in just three steps, with no advanced math required.

Step 1 – Look for credible research or official disclosures. Independent analyses estimate that a medium-length GPT-5 response, which is about 150 to 200 words of output, or roughly 200 to 300 tokens, uses about 19.3 watt-hours. A response of similar length from GPT-4o uses about 1.75 watt-hours.

Step 2 – Use a practical estimate for the amount of water per unit of electricity, combining the usage for cooling and for power.

Independent researchers and industry reports suggest that a reasonable range today is about 1.3 to 2.0 milliliters per watt-hour. The lower end reflects efficient facilities that use modern cooling and cleaner grids. The higher end represents more typical sites.

Step 3 – Now it’s time to put the pieces together. Take the energy number you found in Step 1 and multiply it by the water factor from Step 2. That gives you the water footprint of a single AI response.

Here’s the one-line formula you’ll need:

Energy per prompt (watt-hours) × Water factor (milliliters per watt-hour) = Water per prompt (in milliliters)

For a medium-length query to GPT-5, that calculation should use the figures of 19.3 watt-hours and 2 milliliters per watt-hour. 19.3 x 2 = 39 milliliters of water per response.

For a medium-length query to GPT-4o, the calculation is 1.75 watt-hours x 2 milliliters per watt-hour = 3.5 milliliters of water per response.

If you assume the data centers are more efficient, and use 1.3 milliliters per watt-hour, the numbers drop: about 25 milliliters for GPT-5 and 2.3 milliliters for GPT-4o.

A recent Google technical report said a median text prompt to its Gemini system uses just 0.24 watt-hours of electricity and about 0.26 milliliters of water – roughly the volume of five drops. However, the report does not say how long that prompt is, so it can’t be compared directly with GPT water usage.

Those different estimates – ranging from 0.26 milliliters to 39 milliliters – demonstrate how much the effects of efficiency, AI model and power-generation infrastructure all matter.

Comparisons can add context

To truly understand how much water these queries use, it can be helpful to compare them to other familiar water uses.

When multiplied by millions, AI queries’ water use adds up. OpenAI reports about 2.5 billion prompts per day. That figure includes queries to its GPT-4o, GPT-4 Turbo, GPT-3.5 and GPT-5 systems, with no public breakdown of how many queries are issued to each particular model.

Using independent estimates and Google’s official reporting gives a sense of the possible range:

  • All Google Gemini median prompts: about 650,000 liters per day.
  • All GPT 4o medium prompts: about 8.8 million liters per day.
  • All GPT 5 medium prompts: about 97.5 million liters per day.

A small black spigot spews a stream of water over a green grass lawn.

Americans use lots of water to keep gardens and lawns looking fresh.
James Carbone/Newsday RM via Getty Images

For comparison, Americans use about 34 billion liters per day watering residential lawns and gardens. One liter is about one-quarter of a gallon.

Generative AI does use water, but – at least for now – its daily totals are small compared with other common uses such as lawns, showers and laundry.

But its water demand is not fixed. Google’s disclosure shows what is possible when systems are optimized, with specialized chips, efficient cooling and smart workload management. Recycling water and locating data centers in cooler, wetter regions can help, too.

Transparency matters, as well: When companies release their data, the public, policymakers and researchers can see what is achievable and compare providers fairly.

Read More

The post AI has a hidden water cost − here’s how to calculate yours appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The content presents a balanced and fact-based analysis of the environmental impact of AI, specifically focusing on water usage. It relies on scientific studies, industry reports, and expert opinions without promoting a particular political agenda. The article acknowledges concerns about resource consumption while also highlighting technological innovations and practical solutions, aiming to inform readers rather than persuade them toward a partisan viewpoint. This neutral and informative approach aligns with a centrist perspective.

Continue Reading

Trending