fbpx
Connect with us

The Conversation

I set out to investigate where silky sharks travel − and by chance documented a shark’s amazing power to regenerate its sabotaged fin

Published

on

I set out to investigate where silky sharks travel − and by chance documented a shark's amazing power to regenerate its sabotaged fin

Rather than a tracking tag telling scientists where this shark traveled, its violent removal let them observe an unexpected regeneration .
Josh Schellenberg, CC BY-ND

Chelsea Black, University of Miami

I made an accidental and astonishing discovery while studying the movements of sharks off the coast of Jupiter, Florida. I set out to record the migration routes of silky sharks, named for their smooth skin. Instead, in a story filled with twists and turns, I ended up documenting the rare phenomenon of a shark regenerating a dorsal fin.

Tagging, then trauma

It all started in the summer of 2022, when my team and I tagged silky sharks (Carcharhinus falciformis) as part of my Ph.D. research. Silky sharks are commonly found in the open ocean and grow to be 10 feet long. Scientists know these sharks congregate in South Florida each summer, but where they go the rest of the year remains a mystery – one I hoped to solve.

Three scientists wearing latex gloves lean over the side of a boat holding a still shark. Woman in middle attaches a hand-sized tag with an short antena to the fin on the shark's back.
Chelsea Black, center, a satellite tagging team from the of Miami in June 2022.
Tanner Mansell, CC BY-ND

Local boat captain John Moore took us to a site where sharks are known to gather. We carefully caught and gently attached GPS trackers to the dorsal, or top, fin of 10 silky sharks.

The tags, which are attached like large earrings, do not interfere with swimming and are designed to fall off after a few years. When the tag's antenna breaks the surface of the , its GPS location is picked up by overhead satellites, hopefully revealing details of the shark's secret .

I headed home to track their travels from my laptop.

Advertisement

The story took an unexpected turn a few weeks later, when I received disturbing photos from an avid diver and underwater photographer, Josh Schellenberg, who knew of my work.

Silky shark swiming in water with its dorsal fin missing a chunk of tissue shaped like a satellite tag.
The first sighting of the wounded silky shark in July 2022.
Josh Schellenberg, CC BY-ND

The photos showed a male silky shark with a large, gaping wound in its dorsal fin, as if someone had taken a satellite-tag-shaped cookie cutter and punched it right through. Josh wondered if this individual was one of the sharks from my study.

When placing the GPS tags, I also place a second tag beneath each shark's dorsal fin that displays a unique ID number, so I was able to confirm the shark was one from my study, #409834.

I felt a mixture of relief and sadness. Relief that the shark survived this ordeal; sadness for the scientific data that would now go uncollected.

Silky sharks are often caught by local fishermen in this area but are protected in Florida and illegal to kill or retain. Josh's photos of #409834 showed several hooks in his mouth, so I knew this animal had been captured several times since my team tagged him.

Advertisement

The way the satellite tag attaches means it's impossible for it to naturally rip out of the fin and a wound of this shape. Why someone cut off the shark's satellite tag remains a mystery, but perhaps they thought they could resell it or possibly wanted to interfere with research. I never expected to see that shark again.

The return of #409834

Flash forward to one year later, the summer of 2023. I received several photos of silky sharks from John Moore, our boat captain, who is also an avid diver. John was on the lookout for any of our sharks making their seasonal return to Jupiter. In the many shark photos he sent, I noticed a silky shark with an oddly shaped dorsal fin.

Silky shark swimming through water with an oddly shaped dorsal fin.
Shark #409834 spotted a year later, in June 2023, with a healed dorsal fin.
Josh Schellenberg, CC BY-ND

I knew immediately it had to be #409834 from the previous summer. A few days later, John was able to get close enough to photograph the ID tag to confirm my hunch. Josh Schellenberg also spotted and photographed #409834. With both John's and Josh's photos, I was able to compare the healed dorsal fin with the freshly injured one.

I wasn't expecting to make a groundbreaking discovery. Simple curiosity led me to start analyzing the photos. But the revelation was astonishing: Not only had the wound completely healed, but the 2023 dorsal fin was 10.7% larger in size than it was after the injury in 2022. New fin tissue had regenerated.

A collage of four photos – two are close ups of the dorsal fin freshly injured in 2022 and two are close ups of it healed in 2023. Much of it has grown back.
Changes in the dorsal fin from 2022 and 2023.
Josh Schellenberg and John Moore, CC BY-ND

My analysis determined that within 332 days, the shark regenerated enough tissue that his dorsal fin was almost back to 90% of its original size, growing back more than half of what had been cut off in 2022.

The dorsal fin, pivotal for balance, steering and hydrodynamics, is vital for a shark to be able to hunt and survive. Seeing no infection or any signs of malnourishment in #409834 suggests an extraordinary feat of endurance.

Advertisement

Scientists know that sharks have an incredible aptitude for healing – but mechanisms behind these observations are still poorly understood. While limb regeneration has been widely documented in other marine animals like starfish and crabs, there is only one other documented case of dorsal fin regeneration in a shark – a whale shark in the Indian Ocean that regrew its dorsal fin after a boat in 2006.

400 million years of resilience

There's a reason sharks have been on Earth longer than trees and have survived multiple mass extinction events that wiped out other species. They are a product of 400 million years of evolutionary adaptations that demonstrate their remarkable resilience and have primed them for survival.

To be able to pinpoint an ability that helps make them so resilient is a major scientific advance – especially considering scientists are still questioning where silky sharks spend most of their time in the Atlantic.

One person's attempt to undermine shark science and harm a shark ultimately proved futile. Instead, the shark's toughness prevailed and led to an amazing discovery about this species. This story also shows there are countless individual people, scientists like me and shark enthusiasts like Josh and John, who share a genuine love and respect for these animals.

Advertisement

While I'll never know for certain where #409834 spends the rest of the year, I hope he continues to return to Jupiter each summer so we can further assess his progress. Based on the healing rate calculated in my study, we just might see his dorsal fin grow back to 100% its original size.The Conversation

Chelsea Black, Ph.D. Candidate in Marine Ecosystems and Society, University of Miami

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Did you miss our previous article…
https://www.biloxinewsevents.com/?p=321088

Advertisement

The Conversation

Engineering cells to broadcast their behavior can help scientists study their inner workings

Published

on

theconversation.com – Scott Coyle, Assistant Professor of Biochemistry, of Wisconsin- – 2024-05-31 07:16:17

Protein wave oscillations open a window into living cells.

Scott Coyle and Rohith Rajasekaran, CC BY-ND

Scott Coyle, University of Wisconsin-Madison

Waves are ubiquitous in nature and technology. Whether it's the rise and fall of ocean tides or the swinging of a clock's pendulum, the predictable rhythms of waves create a signal that is easy to track and distinguish from other types of .

Advertisement

Electronic devices use radio waves to send and data, like your laptop and Wi-Fi router or cellphone and cell tower. Similarly, scientists can use a different type of wave to transmit a different type of data: signals from the invisible processes and dynamics underlying how cells make decisions.

I am a synthetic biologist, and my research group developed a technology that sends a wave of engineered proteins traveling through a human cell to a window into the hidden activities that power cells when they're healthy and harm cells when they go haywire.

Waves are a powerful engineering tool

The oscillating behavior of waves is one reason they're powerful patterns in engineering.

For example, controlled and predictable changes to wave oscillations can be used to encode data, such as voice or information. In the case of radio, each station is assigned a unique electromagnetic wave that oscillates at its own frequency. These are the numbers you see on the radio dial.

Advertisement

Animated diagram depicting a signal wave (smooth hills and valleys), AM waves (more waves fit into the shape of hills and valleys) and FM waves (clusters of waves that spread apart slightly at the valleys of the signal)

Waves can be modulated to carry different types of information, such as FM and AM radio.

Berserkerus/Wikimedia Commons, CC BY-SA

Scientists can extend this strategy to living cells. My team used waves of proteins to turn a cell into a microscopic radio station, broadcasting data about its activity in real time to study its behavior.

Turning cells into radio stations

Studying the inside of cells requires a kind of wave that can specifically connect to and interact with the machinery and components of a cell.

Animation of cyan and mangenta waves forming a spiral

Bacterial proteins MinD (cyan) and MinE (magenta) can self-organize into spiral patterns.

CellfOrganized/Wikimedia Commons, CC BY-SA

Advertisement

While electronic devices are built from wires and transistors, cells are built from and controlled by a diverse collection of chemical building blocks called proteins. Proteins perform an array of functions within the cell, from extracting energy from sugar to deciding whether the cell should grow.

Protein waves are generally rare in nature, but some bacteria naturally generate waves of two proteins called MinD and MinE – typically referred to together as MinDE – to them divide. My team discovered that putting MinDE into human cells causes the proteins to reorganize themselves into a stunning array of waves and patterns.

On their own, MinDE protein waves do not interact with other proteins in human cells. However, we found that MinDE could be readily engineered to react to the activity of specific human proteins responsible for making decisions about whether to grow, send signals to neighboring cells, move around and divide.

Left: population of hundreds of human cells displaying protein oscillations. Right: decoded cell state data from each individual cell within the population, color-coded by activity

Putting MinDE into human cells produces visual patterns that can signal changes to protein activity in the cell.

Scott Coyle and Chih-Chia Chang, CC BY-ND

Advertisement

The protein dynamics driving these cellular functions are typically difficult to detect and study in living cells because the activity of proteins is generally invisible to even high-power microscopes. The disruption of these protein patterns is at the core of many cancers and developmental disorders.

We engineered connections between MinDE protein waves and the activity of proteins responsible for key cellular processes. Now, the activity of these proteins trigger changes in the frequency or amplitude of the protein wave, just like an AM/FM radio. Using microscopes, we can detect and record the unique signals individual cells are broadcasting and then decode them to recover the dynamics of these cellular processes.

We have only begun to scratch the surface of how scientists can use protein waves to study cells. If the history of waves in technology is any indicator, their potential is vast.The Conversation

Scott Coyle, Assistant Professor of Biochemistry, University of Wisconsin-Madison

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement
Continue Reading

The Conversation

The rush to return humans to the Moon and build lunar bases could threaten opportunities for astronomy

Published

on

theconversation.com – Martin Elvis, Senior Astrophysicist, Smithsonian Institution – 2024-05-30 07:16:31

A lunar base on the Moon would include solar panels for power generation, and equipment for keeping astronauts alive on the surface.

ESA – P. Carril

Martin Elvis, Smithsonian Institution

The 2020s have already seen many lunar landing attempts, although several of them have crashed or toppled over. With all the excitement surrounding the prospect of humans returning to the Moon, both commercial interests and scientists stand to gain.

Advertisement

The Moon is uniquely suitable for researchers to build telescopes they can't put on Earth because it doesn't have as much satellite interference as Earth, nor a magnetic field blocking out radio waves. But only recently have astronomers like me started thinking about potential conflicts between the desire to expand knowledge of the universe on one side and geopolitical rivalries and commercial gain on the other, and how to balance those interests.

As an astronomer and the co-chair of the International Astronomical Union's working group Astronomy from the Moon, I'm on the hook to investigate this question.

Everyone to the south pole

By 2035 – just 10 or so years away – American and Chinese rockets could be carrying humans to long-term lunar bases.

Both bases are planned for the same small near the south pole because of the near-constant solar power available in this region and the rich source of that scientists believe could be found in the Moon's darkest regions nearby.

Advertisement

Unlike the Earth, the Moon is not tilted relative to its path around the Sun. As a result, the Sun circles the horizon near the poles, almost never setting on some crater rims. There, the never-setting Sun casts long shadows over nearby craters, hiding their floors from direct sunlight for the past 4 years, 90% of the age of the solar system.

These craters are basically pits of eternal darkness. And it's not just dark down there, it's also cold: below -418 degrees Fahrenheit (-250 degrees Celsius). It's so cold that scientists predict that water in the form of ice at the bottom of these craters – likely brought by ancient asteroids colliding with the Moon's surface – will not melt or evaporate away for a very long time.

A close-up shot of the Moon's surface, with the left half covered in shadow, and the right half visible, with gray craters. Tiny blue dots in the center indicate PSRs.

Dark craters on the Moon, parts of which are indicated here in blue, never get sunlight. Scientists think some of these permanently shadowed regions could contain water ice.

NASA's Goddard Space Flight Center

Surveys from lunar orbit suggest that these craters, called permanently shadowed regions, could hold half a billion tons of water.

Advertisement

The constant sunlight for solar power and proximity to frozen water makes the Moon's poles attractive for human bases. The bases will also need water to drink, wash up and grow crops to feed hungry astronauts. It is hopelessly expensive to bring long-term water supplies from Earth, so a local watering hole is a big deal.

Telescopes on the Moon

For decades, astronomers had ignored the Moon as a potential site for telescopes because it was simply infeasible to build them there. But human bases open up new opportunities.

The radio-sheltered far side of the Moon, the part we never see from Earth, makes recording very low frequency radio waves accessible. These are likely to contain signatures of the universe's “Dark Ages,” a time before any or galaxies formed.

Astronomers could also put gravitational wave detectors at the poles, since these detectors are extraordinarily sensitive, and the Moon's polar regions don't have earthquakes to disturb them as they do on Earth.

Advertisement

A lunar gravitational wave detector could let scientists collect data from pairs of black holes orbiting each other very closely right before they merge. Predicting where and when they will merge tells astronomers where and when to look for a flash of light that they would otherwise miss. With those extra clues, scientists could learn how these black holes are born and how they evolve.

The cold at the lunar poles also makes infrared telescopes vastly more sensitive by shifting the telescopes' black body radiation to longer wavelengths. These telescopes could give astronomers new tools to look for on Earth-like planets beyond the solar system.

And more ideas keep coming. The first radio antennae are to land on the far side next year.

Conflicting interests

But the rush to build bases on the Moon could interfere with the very conditions that make the Moon so attractive for research in the first place. Although the Moon's surface area is greater than Africa's, human explorers and astronomers want to visit the same few kilometer-sized locations.

Advertisement

But activities that will sustain a human presence on the Moon, such as mining for water, will create vibrations that could ruin a gravitational wave telescope.

Also, many elements found on the Moon are extremely valuable back on Earth. Liquid hydrogen and oxygen make precious rocket propellant, and helium-3 is a rare substance used to improve quantum computers.

But one of the few places rich in helium-3 on the Moon is found in one of the most likely places to put a far-side, Dark Ages radio telescope.

Finally, there are at least two internet and GPS satellite constellations planned to orbit the Moon a few years from now. Unintentional radio emissions from these satellites could render a Dark Ages telescope useless.

Advertisement

The time is now

But compromise isn't out of the question. There might be a few alternative spots to place each telescope.

In 2024, the International Astronomical Union put together the working group Astronomy from the Moon to start defining which sites astronomers want to preserve for their work. This entails ranking the sites by their importance for each type of telescope and beginning to with a key United Nations committee. These steps may help astronomers, astronauts from multiple countries and private interests share the Moon.The Conversation

Martin Elvis, Senior Astrophysicist, Smithsonian Institution

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement
Continue Reading

The Conversation

AI is cracking a hard problem – giving computers a sense of smell

Published

on

theconversation.com – Ambuj Tewari, Professor of Statistics, of Michigan – 2024-05-30 07:15:55

A rose by any other name would not smell as sweet to a robot.

estt/iStock via Getty Images

Ambuj Tewari, University of Michigan

Over 100 years ago, Alexander Graham Bell asked the of National Geographic to do something bold and fresh – “to found a new science.” He pointed out that sciences based on the measurements of sound and light already existed. But there was no science of odor. Bell asked his readers to “measure a smell.”

Advertisement

, smartphones in most people's pockets provide impressive built-in capabilities based on the sciences of sound and light: voice assistants, facial recognition and photo enhancement. The science of odor does not offer anything comparable. But that situation is changing, as advances in machine olfaction, also called “digitized smell,” are finally answering Bell's call to action.

Research on machine olfaction faces a formidable due to the complexity of the human sense of smell. Whereas human vision mainly relies on receptor cells in the retina – rods and three types of cones – smell is experienced through about 400 types of receptor cells in the nose.

Machine olfaction starts with sensors that detect and identify molecules in the . These sensors serve the same purpose as the receptors in your nose.

But to be useful to people, machine olfaction needs to go a step further. The system needs to know what a certain molecule or a set of molecules smells like to a human. For that, machine olfaction needs machine learning.

Advertisement

Applying machine learning to smells

Machine learning, and particularly a kind of machine learning called deep learning, is at the core of remarkable advances such as voice assistants and facial recognition apps.

Machine learning is also key to digitizing smells because it can learn to map the molecular structure of an odor-causing compound to textual odor descriptors. The machine learning model learns the words humans tend to use – for example, “sweet” and “dessert” – to describe what they experience when they encounter specific odor-causing compounds, such as vanillin.

a hand holds a device over a glass containing a translucent brown liquid

A university research prototype artificial nose can distinguish between coffee and whiskey.

Marcus Brandt/picture alliance via Getty Images

However, machine learning needs large datasets. The web has an unimaginably huge amount of audio, image and video content that can be used to train artificial intelligence systems that recognize sounds and pictures. But machine olfaction has long a data shortage problem, partly because most people cannot verbally describe smells as effortlessly and recognizably as they can describe sights and sounds. Without access to web-scale datasets, researchers weren't able to train really powerful machine learning models.

Advertisement

However, things started to change in 2015 when researchers launched the DREAM Olfaction Prediction Challenge. The competition released data collected by Andreas Keller and Leslie Vosshall, biologists who study olfaction, and invited teams from around the world to submit their machine learning models. The models had to predict odor labels like “sweet,” “flower” or “fruit” for odor-causing compounds based on their molecular structure.

The top performing models were published in a paper in the journal Science in 2017. A classic machine learning technique called random forest, which combines the output of multiple decision tree flow charts, turned out to be the winner.

I am a machine learning researcher with a longstanding interest in applying machine learning to chemistry and psychiatry. The DREAM challenge piqued my interest. I also felt a personal connection to olfaction. My traces its roots to the small town of Kannauj in northern India, which is India's perfume capital. Moreover, my father is a chemist who spent most of his career analyzing geological samples. Machine olfaction thus offered an irresistible at the intersection of perfumery, culture, chemistry and machine learning.

Progress in machine olfaction started picking up steam after the DREAM challenge concluded. During the COVID-19 pandemic, many cases of smell blindness, or anosmia, were reported. The sense of smell, which usually takes a back seat, rose in public consciousness. Additionally, a research , the Pyrfume Project, made more and larger datasets publicly available.

Advertisement

Smelling deeply

By 2019, the largest datasets had grown from less than 500 molecules in the DREAM challenge to about 5,000 molecules. A Google Research team led by Alexander Wiltschko was finally able to bring the deep learning revolution to machine olfaction. Their model, based on a type of deep learning called graph neural networks, established state-of-the-art results in machine olfaction. Wiltschko is now the founder and of Osmo, whose mission is “giving computers a sense of smell.”

Recently, Wiltschko and his team used a graph neural network to create a “principal odor map,” where perceptually similar odors are placed closer to each other than dissimilar ones. This was not easy: Small changes in molecular structure can lead to large changes in olfactory perception. Conversely, two molecules with very different molecular structures can nonetheless smell almost the same.

Such progress in cracking the code of smell is not only intellectually exciting but also has highly promising applications, including personalized perfumes and fragrances, better insect repellents, novel chemical sensors, early detection of disease, and more realistic augmented reality experiences. The future of machine olfaction looks bright. It also promises to smell good.The Conversation

Ambuj Tewari, Professor of Statistics, University of Michigan

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement
Continue Reading

News from the South

Trending