In 1974, an infant mountain gorilla was born in Volcanoes National Park in Rwanda. Researchers named him Titus. As is typical for young gorillas in the wild, Titus spent the first years of his life surrounded by his mother, father and siblings, as well as more distant relatives and unrelated gorillas that made up his social group.
In 1978, however, tragedy struck. Poachers killed Titus’ father and brother. In the chaos that followed, his younger sister was killed by another gorilla, and his mother and older sister fled the group. Juvenile Titus, who was at a developmental stage similar to that of an 8- or 9-year-old human, experienced more tragedy in his first four years of life than many animals do in a lifetime.
In people, a rough start in life is often associated with significant problems later on. Early life adversity can take a wide variety of forms, including malnutrition, war and abuse. People who experience these kinds of traumas, assuming they survive the initial event, are more likely to suffer health problems and social dysfunction in adulthood and to have shorter life spans. Often, these outcomes trace back at least in part to what public health researchers call health risk behaviors – things like smoking, poor eating habits and a sedentary lifestyle.
Given the connection between adverse events while young and poor health later in life, one might expect that Titus’ unlucky early years would predict a short, unhealthy adulthood for him. However, there are interesting hints that things might work differently in mountain gorillas, which are one of humans’ closest living relatives.
Researchers analyzed decades of observational data to determine how life turned out for young gorillas that had faced adversity. Dian Fossey Gorilla Fund
Decades of gorilla observations
As scientists who have spentmany years studying wild gorillas, we have observed a wide variety of early life experiences and an equally wide variety of adult health outcomes in these great apes. Unlike other primates, mountain gorillas don’t appear to suffer any long-term negative effects of losing their mothers at an early age, provided that they reach the age at which they are old enough to have finished nursing.
Losing your mother is only one of many bad things that can happen to a young gorilla, though. We wanted to investigate whether a pattern of resilience was more generalized. If so, could we gather any insight into the fundamental question of how early life experiences can have long-lasting effects?
To do this, we needed exceptionally detailed long-term data on wild gorillas across their lifetimes. This is no mean feat, given gorillas’ long life spans. Primatologists know that males can survive into their late 30s and females into their mid-40s.
The best data in the world to conduct such a study comes from the Dian Fossey Gorilla Fund, which has been following individual mountain gorillas in Rwanda almost daily for 55 years. We conducted doctoral and postdoctoral research with the Fossey Fund and have collaborated with other scientists there for more than 20 years.
From their database, which stretches back to 1967, we extracted information on more than 250 gorillas tracked from the day they were born to the day they died or left the study area.
We used this data to identify six adverse events that gorillas younger than age 6 can endure: maternal loss, paternal loss, extreme violence, social isolation, social instability and sibling competition. These experiences are the gorilla equivalent of some kinds of adversity that are linked with long-term negative effects in humans and other animals.
Many young gorillas didn’t survive these challenges. This is a strong indication that these experiences were indeed adverse from the perspective of a gorilla.
Ubufatanye experienced the loss of her mother and father and the disintegration of her family group before the age of 5. Now 20, she has become a successful mother, raising three offspring. Dian Fossey Gorilla Fund
We were surprised to discover, however, that most of the repercussions of these hardships were confined to early life: animals that survived past the age of 6 did not have the shorter life spans commonly associated with early life adversity in other species.
In fact, gorillas that experienced three or more forms of adversity actually had better survival outcomes, with a 70% reduction in the risk of death across their adult years. Part of this hardiness, especially for males, may be due to a phenomenon called viability selection: Only the strongest animals survive early adversity, and thus they are also the animals with the longest life spans.
While viability selection may be part of the story, the patterns in our data strongly suggest that as a species, mountain gorillas are also remarkably resilient to early adversity.
Where do gorillas get their resilience?
Although our findings corroborate previous research on maternal loss in gorillas, they contrast with other studies on early adversity in humans and other long-lived mammals. Our study indicates that the negative later-life consequences of early adversity are not universal.
The absence of this connection in one of our closest relatives suggests there might be protective mechanisms that help build resiliency to early-life knocks. Gorillas may provide valuable clues to understand how early life experiences have such far-reaching effects and how people can potentially overcome them.
Young gorillas live with their parents as part of larger social groups. Dian Fossey Gorilla Fund
While there is still much left to explore, we suspect that gorillas’ food-rich habitat and cohesive social groups could underpin their resiliency. When young gorillas lose their mothers, other social group members fill in the companionship hole she leaves behind. Something similar may happen for other types of early adversity as well. A supportive social network combined with plentiful food may help a young gorilla push through challenges.
This possibility underscores the importance of ensuring that human children who experience early adversity are supported in multiple ways: socially, but also economically, especially since early adversity is particularly prevalent among children living in poverty – itself a form of adversity.
Titus, pictured here as an adult, survived more adversity before age 4 than many animals confront in a lifetime. Dian Fossey Gorilla Fund
And what became of Titus? Despite his difficult start in life, Titus went on to lead his group for two decades, siring at least 13 offspring and surviving to his 35th birthday, making him one of the most successful gorillas the Dian Fossey Gorilla Fund has ever studied.
Though Titus’ story is only a single anecdote, it turns out that his resilience is not so unusual for a member of his species.
theconversation.com – Christopher Palma, Teaching Professor of Astronomy & Astrophysics, Penn State – 2025-08-04 07:41:00
During a solar eclipse, astronomers can study the Sun’s faint corona, usually hidden by the bright Sun. The European Space Agency’s Proba-3 mission creates artificial eclipses using two spacecraft flying in precise formation about 492 feet apart. One spacecraft blocks the Sun’s bright disk, casting a shadow on the second, which photographs the corona. Launched in 2024, Proba-3 orbits between 372 miles and 37,282 miles from Earth, maintaining alignment within one millimeter at high speeds. The mission aids future satellite technologies and studies space weather to improve forecasting of solar storms that affect Earth’s satellites.
During a solar eclipse, astronomers who study heliophysics are able to study the Sun’s corona – its outer atmosphere – in ways they are unable to do at any other time.
The brightest part of the Sun is so bright that it blocks the faint light from the corona, so it is invisible to most of the instruments astronomers use. The exception is when the Moon blocks the Sun, casting a shadow on the Earth during an eclipse. But as an astronomer, I know eclipses are rare, they last only a few minutes, and they are visible only on narrow paths across the Earth. So, researchers have to work hard to get their equipment to the right place to capture these short, infrequent events.
In their quest to learn more about the Sun, scientists at the European Space Agency have built and launched a new probe designed specifically to create artificial eclipses.
Meet Proba-3
This probe, called Proba-3, works just like a real solar eclipse. One spacecraft, which is roughly circular when viewed from the front, orbits closer to the Sun, and its job is to block the bright parts of the Sun, acting as the Moon would in a real eclipse. It casts a shadow on a second probe that has a camera capable of photographing the resulting artificial eclipse.
The two spacecraft of Proba-3 fly in precise formation about 492 feet (150 meters) apart. ESA-P. Carril, CC BY-NC-ND
Having two separate spacecraft flying independently but in such a way that one casts a shadow on the other is a challenging task. But future missions depend on scientists figuring out how to make this precision choreography technology work, and so Proba-3 is a test.
This technology is helping to pave the way for future missions that could include satellites that dock with and deorbit dead satellites or powerful telescopes with instruments located far from their main mirrors.
The side benefit is that researchers get to practice by taking important scientific photos of the Sun’s corona, allowing them to learn more about the Sun at the same time.
An immense challenge
The two satellites launched in 2024 and entered orbits that approach Earth as close as 372 miles (600 kilometers) – that’s about 50% farther from Earth than the International Space Station – and reach more than 37,282 miles (60,000 km) at their most distant point, about one-sixth of the way to the Moon.
During this orbit, the satellites move at speeds between 5,400 miles per hour (8,690 kilometers per hour) and 79,200 mph (127,460 kph). At their slowest, they’re still moving fast enough to go from New York City to Philadelphia in one minute.
While flying at that speed, they can control themselves automatically, without a human guiding them, and fly 492 feet (150 meters) apart – a separation that is longer than the length of a typical football stadium – while still keeping their locations aligned to about one millimeter.
They needed to maintain that precise flying pattern for hours in order to take a picture of the Sun’s corona, and they did it in June 2025.
The Proba-3 mission is also studying space weather by observing high-energy particles that the Sun ejects out into space, sometimes in the direction of the Earth. Space weather causes the aurora, also known as the northern lights, on Earth.
Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.
Political Bias Rating: Centrist
The content is a factual and scientific discussion of the Proba-3 space mission and its efforts to study the Sun’s corona through artificial eclipses. It emphasizes technological achievement and scientific advancement without promoting any political ideology or taking a stance on politically charged issues. The tone is neutral, informative, and focused on space exploration and research, which aligns with a centrist, nonpartisan perspective.
theconversation.com – Elizabeth W. Covington, Associate Clinical Professor of Pharmacy, Auburn University – 2025-07-31 07:35:00
About 10–20% of Americans report a penicillin allergy, but fewer than 1% actually are allergic. Many people are labeled allergic due to childhood rashes or mild side effects, which are often unrelated to true allergies. Penicillin, discovered in 1928, is a narrow-spectrum antibiotic used to treat many infections safely and effectively. Incorrect allergy labels lead to use of broader, costlier antibiotics that promote resistance and may cause more side effects. Allergy status can be evaluated through detailed medical history and penicillin skin testing or monitored test dosing, allowing many to safely use penicillin again.
Imagine this: You’re at your doctor’s office with a sore throat. The nurse asks, “Any allergies?” And without hesitation you reply, “Penicillin.” It’s something you’ve said for years – maybe since childhood, maybe because a parent told you so. The nurse nods, makes a note and moves on.
But here’s the kicker: There’s a good chance you’re not actually allergic to penicillin. About 10% to 20% of Americans report that they have a penicillin allergy, yet fewer than 1% actually do.
I know from my research that incorrectly being labeled as allergic to penicillin can prevent you from getting the most appropriate, safest treatment for an infection. It can also put you at an increased risk of antimicrobial resistance, which is when an antibiotic no longer works against bacteria.
The good news? It’s gotten a lot easier in recent years to pin down the truth of the matter. More and more clinicians now recognize that many penicillin allergy labels are incorrect – and there are safe, simple ways to find out your actual allergy status.
A steadfast lifesaver
Penicillin, the first antibiotic drug, was discovered in 1928 when a physician named Alexander Fleming extracted it from a type of mold called penicillium. It became widely used to treat infections in the 1940s. Penicillin and closely related antibiotics such as amoxicillin and amoxicillin/clavulanate, which goes by the brand name Augmentin, are frequently prescribed to treat common infections such as ear infections, strep throat, urinary tract infections, pneumonia and dental infections.
Penicillin antibiotics are a class of narrow-spectrum antibiotics, which means they target specific types of bacteria. People who report having a penicillin allergy are more likely to receive broad-spectrum antibiotics. Broad-spectrum antibiotics kill many types of bacteria, including helpful ones, making it easier for resistant bacteria to survive and spread. This overuse speeds up the development of antibiotic resistance. Broad-spectrum antibiotics can also be less effective and are often costlier.
Figuring out whether you’re really allergic to penicillin is easier than it used to be.
Why the mismatch?
People often get labeled as allergic to antibiotics as children when they have a reaction such as a rash after taking one. But skin rashes frequently occur alongside infections in childhood, with many viruses and infections actually causing rashes. If a child is taking an antibiotic at the time, they may be labeled as allergic even though the rash may have been caused by the illness itself.
Some side effects such as nausea, diarrhea or headaches can happen with antibiotics, but they don’t always mean you are allergic. These common reactions usually go away on their own or can be managed. A doctor or pharmacist can talk to you about ways to reduce these side effects.
People also often assume penicillin allergies run in families, but having a relative with an allergy doesn’t mean you’re allergic – it’s not hereditary.
Finally, about 80% of patients with a true penicillin allergy will lose the allergy after about 10 years. That means even if you used to be allergic to this antibiotic, you might not be anymore, depending on the timing of your reaction.
Why does it matter if I have a penicillin allergy?
Believing you’re allergic to penicillin when you’re not can negatively affect your health. For one thing, you are more likely to receive stronger, broad-spectrum antibiotics that aren’t always the best fit and can have more side effects. You may also be more likely to get an infection after surgery and to spend longer in the hospital when hospitalized for an infection. What’s more, your medical bills could end up higher due to using more expensive drugs.
Penicillin and its close cousins are often the best tools doctors have to treat many infections. If you’re not truly allergic, figuring that out can open the door to safer, more effective and more affordable treatment options.
A penicillin skin test can safely determine whether you have a penicillin allergy, but a health care professional may also be able to tell by asking you some specific questions. BSIP/Collection Mix: Subjects via Getty Images
How can I tell if I am really allergic to penicillin?
Start by talking to a health care professional such as a doctor or pharmacist. Allergy symptoms can range from a mild, self-limiting rash to severe facial swelling and trouble breathing. A health care professional may ask you several questions about your allergies, such as what happened, how soon after starting the antibiotic did the reaction occur, whether treatment was needed, and whether you’ve taken similar medications since then.
These questions can help distinguish between a true allergy and a nonallergic reaction. In many cases, this interview is enough to determine you aren’t allergic. But sometimes, further testing may be recommended.
One way to find out whether you’re really allergic to penicillin is through penicillin skin testing, which includes tiny skin pricks and small injections under the skin. These tests use components related to penicillin to safely check for a true allergy. If skin testing doesn’t cause a reaction, the next step is usually to take a small dose of amoxicillin while being monitored at your doctor’s office, just to be sure it’s safe.
A study published in 2023 showed that in many cases, skipping the skin test and going straight to the small test dose can also be a safe way to check for a true allergy. In this method, patients take a low dose of amoxicillin and are observed for about 30 minutes to see whether any reaction occurs.
With the right questions, testing and expertise, many people can safely reclaim penicillin as an option for treating common infections.
Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.
Political Bias Rating: Centrist
This content is educational and focused on medical information, specifically on penicillin allergies and their impact on health care. It presents scientific research and clinical practices without promoting any political ideology or partisan perspective. The article emphasizes evidence-based medical facts and encourages discussion with health care professionals, maintaining a neutral and informative tone typical of centrist communication.
theconversation.com – Stephanie N. Del Tufo, Assistant Professor of Education & Human Development, University of Delaware – 2025-07-28 07:34:00
Reading and listening engage the brain differently. Reading allows control over pace, helps recognize letters, sounds, and meanings, and uses visual cues like punctuation to aid understanding. Listening requires memory to retain fleeting spoken words, quickly identifying sounds amid continuous speech, and attention to tone and context. Listening can be harder than reading, especially with complex material, while reading enables easier review and note-taking. For some, like people with dyslexia, listening may be easier. Engagement matters: multitasking during listening can reduce comprehension. Both reading and listening offer unique benefits and are complementary rather than interchangeable for learning.
“Do we need to read, or can we just get everything through audio, like podcasts and audiobooks?” – Sebastian L., 15, Skanderborg, Denmark
Let’s start with a thought experiment: Close your eyes and imagine what the future might look like in a few hundred years.
Are people intergalactic travelers zooming between galaxies? Maybe we live on spaceships, underwater worlds or planets with purple skies.
Now, picture your bedroom as a teenager of the future. There’s probably a glowing screen on the wall. And when you look out the window, maybe you see Saturn’s rings, Neptune’s blue glow or the wonders of the ocean floor.
Now ask yourself: Is there a book in the room?
Open your eyes. Chances are, there’s a book nearby. Maybe it’s on your nightstand or shoved under your bed. Some people have only one; others have many.
You’ll still find books today, even in a world filled with podcasts. Why is that? If we can listen to almost anything, why does reading still matter?
As a language scientist, I study how biological factors and social experiences shape language. My work explores how the brain processes spoken and written language, using tools like MRI and EEG.
Whether reading a book or listening to a recording, the goal is the same: understanding. But these activities aren’t exactly alike. Each supports comprehension in different ways. Listening doesn’t provide all the benefits of reading, and reading doesn’t offer everything listening does. Both are important, but they are not interchangeable.
Your brain uses some of the same language and cognitive systems for both reading and listening, but it also performs different functions depending on how you’re taking in the information.
When you read, your brain is working hard behind the scenes. It recognizes the shapes of letters, matches them to speech sounds, connects those sounds to meaning, then links those meanings across words, sentences and even whole books. The text uses visual structure such as punctuation marks, paragraph breaks or bolded words to guide understanding. You can go at your own speed.
Speech is also a continuous stream, not neatly separated words. When someone speaks, the sounds blend together in a process called coarticulation. This requires the listener’s brain to quickly identify word boundaries and connect sounds to meanings. Beyond identifying the words themselves, the listener’s brain must also pay attention to tone, speaker identity and context to understand the speaker’s meaning.
‘Easier’ is relative – and contextual
Many people assume that listening is easier than reading, but this is not usually the case. Research shows that listening can be harder than reading, especially when the material is complex or unfamiliar.
Reading difficult material tends to be easier than listening from a practical standpoint, as well. Reading lets you move around within the text easily, rereading particular sections if you’re struggling to understand, or underlining important points to revisit later. A listener who is having trouble following a particular point must pause and rewind, which is less precise than scanning a page and can interrupt the flow of listening, impeding understanding.
Even so, for some people, like those with developmental dyslexia, listening may be easier. Individuals with developmental dyslexia often struggle to apply their knowledge of written language to correctly pronounce written words, a process known as decoding. Listening allows the brain to extract meaning without the difficult process of decoding.
People often listen while doing other things, like exercising, cooking or browsing the internet – activities that would be hard to do while reading. When researchers asked college students to either read or listen to a podcast on their own time, students who read the material performed significantly better on a quiz than those who listened. Many of the students who listened reported multitasking, such as clicking around on their computers while the podcast played. This is particularly important, as paying attention appears to be more important for listening comprehension than reading comprehension.
So, yes, reading still matters, even when listening is an option. Each activity offers something different, and they are not interchangeable.
The best way to learn is not by treating books and audio recordings as the same, but by knowing how each works and using both to better understand the world.
Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to CuriousKidsUS@theconversation.com. Please tell us your name, age and the city where you live.
And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.
Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.
Political Bias Rating: Centrist
This article presents a neutral and factual exploration of the cognitive differences between reading and listening without advocating for any political ideology. It focuses on scientific research and educational perspectives, using measured language and citing studies to explain how both methods of information intake engage the brain differently. The tone is informative and balanced, aimed at a general audience, including children, without promoting any partisan viewpoints or ideological framing. Overall, it adheres to objective reporting grounded in neuroscience and education.