Connect with us

The Conversation

Some black holes at the centers of galaxies have a buddy − but detecting these binary pairs isn’t easy

Published

on

theconversation.com – Marco Ajello, Professor of Physics and Astronomy, Clemson University – 2024-12-05 07:40:00

Some black holes, bound by gravity, rotate around each other, as shown in this simulated image.
Simulating eXtreme Spacetimes Lensing (SXS), CC BY-SA

Marco Ajello, Clemson University and Jonathan Zrake, Clemson University

Every galaxy has a supermassive black hole at its center, much like every egg has a yolk. But sometimes, hens lay eggs with two yolks. In a similar way, astrophysicists like us who study supermassive black holes expect to find binary systems – two supermassive black holes orbiting each other – at the hearts of some galaxies.

Black holes are regions of space where gravity is so strong that not even light can escape from their vicinity. They form when the core of a massive star collapses on itself, and they act as cosmic vacuum cleaners. Supermassive black holes have a mass a million times that of our Sun or larger. Scientists like us study them to understand how gravity works and how galaxies form.

Figuring out whether a galaxy has one or two black holes in its center isn’t as easy as cracking an egg and examining the yolk. But measuring how often these binary supermassive black holes form can help researchers understand what happens to galaxies when they merge.

In a new study, our team dug through historical astronomical data dating back over a hundred years. We looked for light emitted from one galaxy that showed signs of harboring a binary supermassive black hole system.

Galactic collisions and gravitational waves

Galaxies like the Milky Way are nearly as old as the universe. Sometimes, they collide with other galaxies, which can lead to the galaxies merging and forming a larger, more massive galaxy.

The two black holes at the center of the two merging galaxies may, when close enough, form a pair bound by gravity. This pair may live for up to hundreds of millions of years before the two black holes eventually merge into one.

YouTube video
Supermassive black holes orbiting around each other can emit gravitational waves.

Binary black holes release energy in the form of gravitational waves – ripples in space-time that specialized observatories can detect. According to Einstein’s general relativity theory, these ripples travel at the speed of light, causing space itself to stretch and squeeze around them, kind of like a wave.

Pulsar timing arrays use pulsars, which are the dense, bright cores of collapsed stars. Pulsars spin very fast. Researchers can look for gaps and anomalies in the pattern of radio waves emitted from these spinning pulsars to detect gravitational waves.

While pulsar timing arrays can detect the collective gravitational wave signal from the ensemble of binaries within the past 9 billion years, they’re not yet sensitive enough to detect the gravitational wave signal from a single binary system in one galaxy. And even the most powerful telescopes can’t image these binary black holes directly. So, astronomers have to use clever indirect methods to figure out whether a galaxy has a binary supermassive black hole in its center.

Searching for signs of binary black holes

One type of indirect method involves searching for periodic signals from the centers of active galaxies. These are galaxies that emit significantly more energy than astronomers might expect from the amount of stars, gas and dust they contain.

These galaxies emit energy from their nucleus, or center – called the active galactic nucleus. In a process called accretion, the black hole in each active galaxy uses gravity to pull nearby gas inward. The gas speeds up as it approaches the black hole’s event horizon – like how water surrounding a whirlpool moves faster and faster as it spirals inward.

As the gas heats up, it glows brightly in optical, ultraviolet and X-ray light. Active galactic nuclei are some of the most luminous objects in the universe.

Some active galactic nuclei can launch jets, which are particle beams accelerated to near the speed of light. When these jets line up with our observatories’ lines of sight, they appear extremely bright. They’re like cosmic lighthouses.

Some active galactic nuclei have periodic light signals that get bright, fade and then get bright again. This unique signal could come from the cyclical motion of two supermassive black holes inside, and it suggests to astronomers to look for a binary black hole system in that galaxy.

On the hunt for a binary black hole system

Our team studied one such active galactic nucleus, called PG 1553+153. The light from this object gets brighter and dimmer about every 2.2 years.

These periodic variations suggest that PG 1553+153 has a supermassive black hole binary inside. But a binary isn’t the only explanation for this variation. Other phenomena, such as wobbly jets or changes in the flow of material around the black hole, could also explain this pattern without the presence of a binary black hole, so we had to rule those out.

To understand whether the PG 1553+153 system’s light emission patterns came from a binary black hole, we simulated how binary supermassive black holes collect gas. Our models suggested that sometimes, when the black holes pull in gas, dense clumps of gas collect around the outside of the hole.

We calculated that the time it takes for these clumps to orbit around the two black holes should be five to 10 times longer than the time it takes for the two black holes to circle each other.

So, we finally had a clear prediction that we could test. If a binary black hole system caused the 2.2-year periodic variation in PG 1553+153, then we should also be able to see a longer pattern of variation, about every 10 to 20 years, when the clumps of gas circle around the black holes.

But to see whether this was really a pattern, we needed to watch it repeat for four to five cycles. For PG 1553+153, that would be 40 to 100 years.

Astronomers have observed the sky for hundreds of years. But the era of digital astronomy, where astronomical images are recorded on computers and saved in databases, is very recent – only since the year 2000 or so.

Before then, starting around 1850, astronomers recorded images of the sky on photographic plates. These are flat pieces of glass coated with a light-sensitive chemical layer traditionally used in photography. Many observatories around the world have photographic images of the night sky dating back to more than a hundred years ago. Before that, astronomers would sketch what the sky looked like in their notebooks.

Projects like DASCH, Digital Access to a Sky Century at Harvard, have started digitalizing photographic plates from a few observatories to make them available for scientists and nonscientists alike.

Our team learned that the DASCH database provided data on PG 1553+153 dating back to 1900 – more than 120 years. We used this dataset to see whether we could see a pattern repeating every 10 to 20 years.

Somewhat to our surprise, we found a 20-year pattern that adds more evidence to our theory that there’s a binary system at the core of PG 1553+153. The detection of this second pattern also helped us figure out that the masses of the two supermassive black holes are in a 2.5:1 ratio – with one 2½ times as large as the other – and that their orbit is nearly circular.

While this historical data makes us more confident that there are two supermassive black holes in PG 1553+153, we still can’t say for sure. The final confirmation might need to wait until pulsar timing arrays become sensitive enough to detect the gravitational waves coming from PG 1553+153.The Conversation

Marco Ajello, Professor of Physics and Astronomy, Clemson University and Jonathan Zrake, Assistant Professor of Physics, Clemson University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Some black holes at the centers of galaxies have a buddy − but detecting these binary pairs isn’t easy appeared first on theconversation.com

The Conversation

Science requires ethical oversight – without federal dollars, society’s health and safety are at risk

Published

on

theconversation.com – Christine Coughlin, Professor of Law, Wake Forest University – 2025-05-09 07:51:00


Federal cuts to research funding under the Trump administration threaten both scientific progress and ethical oversight in biomedical research. The National Institutes of Health (NIH) has been pivotal in supporting innovations such as cancer treatments, but cuts and hiring freezes have led to suspended clinical trials and delayed studies. Ethical concerns surrounding emerging biotechnologies like brain organoids underscore the importance of federal research infrastructure in safeguarding scientific integrity. This oversight is vital to prevent exploitation, ensure voluntary consent, and protect participants from harm, maintaining global leadership in biomedical research. The article calls for continued support to sustain medical advancements and safeguard public health.

Brain organoids, pictured here, raise both many medical possibilities and ethical questions.
NIAID/Flickr, CC BY-SA

Christine Coughlin, Wake Forest University and Nancy M. P. King, Wake Forest University

As the Trump administration continues to make significant cuts to NIH budgets and personnel and to freeze billions of dollars of funding to major research universities – citing ideological concerns – there’s more being threatened than just progress in science and medicine. Something valuable but often overlooked is also being hit hard: preventing research abuse.

The National Institutes of Health has been the world’s largest public funder of biomedical research. Its support helps translate basic science into biomedical therapies and technologies, providing funding for nearly all treatments approved by the Food and Drug Administration from 2010 to 2019. This enables the U.S. to lead global research while maintaining transparency and preventing research misconduct.

While the legality of directives to shrink the NIH is unclear, the Trump administration’s actions have already led to suspended clinical trials, institutional hiring freezes and layoffs, rescinded graduate student admissions, and canceled federal grant review meetings. Researchers at affected universities say that funding will delay or possibly eliminate ongoing studies on critical conditions like cancer and Alzheimer’s.

YouTube video
The Trump administration has deeply culled U.S. science across agencies and institutions.

It is clear to us, as legal and bioethics scholars whose research often focuses on the ethical, legal and social implications of emerging biotechnologies, that these directives will have profoundly negative consequences for medical research and human health, with ripple effects that will last decades. Our scholarship demonstrates that in order to contribute to knowledge and, ultimately, to biomedical treatments, medical research at every stage depends on significant infrastructure support and ethical oversight.

Our recent focus on brain organoid research – 3D lab models grown from human stem cells that simulate brain structure and function – shows how federal support for research is key to not only promote innovation, but to protect participants and future patients.

History of NIH and research ethics

The National Institutes of Health began as a one-room laboratory within the Marine Hospital Service in 1887. After World War I, chemists involved in the war effort sought to apply their knowledge to medicine. They partnered with Louisiana Sen. Joseph E. Ransdell who, motivated by the devastation of malaria, yellow fever and the 1928 influenza pandemic, introduced federal legislation to support basic research and fund fellowships focusing on solving medical problems.

By World War II, biomedical advances like surgical techniques and antibiotics had proved vital on the battlefield. Survival rates increased from 4% during World War I to 50% in World War II. Congress passed the 1944 Public Health Services Act to expand NIH’s authority to fund biomedical research at public and private institutions. President Franklin D. Roosevelt called it “as sound an investment as any Government can make; the dividends are payable in human life and health.”

As science advanced, so did the need for guardrails. After World War II, among the top Nazi leaders prosecuted for war crimes were physicians who conducted experiments on people without consent, such as exposure to hypothermia and infectious disease. The verdicts of these Doctors’ Trials included 10 points about ethical human research that became the Nuremberg Code, emphasizing voluntary consent to participation, societal benefit as the goal of human research, and significant limitations on permissible risks of harm. The World Medical Association established complementary international guidelines for physician-researchers in the 1964 Declaration of Helsinki.

White researcher injecting a Black participant in the Tuskegee Study with a syringe
At least 100 participants died in the Tuskegee Untreated Syphilis Study.
National Archives

In the 1970s, information about the Tuskegee study – a deceptive and unethical 40-year study of untreated syphilis in Black men – came to light. The researchers told study participants they would be given treatment but did not give them medication. They also prevented participants from accessing a cure when it became available in order to study the disease as it progressed. The men enrolled in the study experienced significant health problems, including blindness, mental impairment and death.

The public outrage that followed starkly demonstrated that the U.S. couldn’t simply rely on international guidelines but needed federal standards on research ethics. As a result, the National Research Act of 1974 led to the Belmont Report, which identified ethical principles essential to human research: respect for persons, beneficence and justice.

Federal regulations reinforced these principles by requiring all federally funded research to comply with rigorous ethical standards for human research. By prohibiting financial conflicts of interest and by implementing an independent ethics review process, new policies helped ensure that federally supported research has scientific and social value, is scientifically valid, fairly selects and adequately protects participants.

These standards and recommendations guide both federally and nonfederally funded research today. The breadth of NIH’s mandate and budget has provided not only the essential structure for research oversight, but also key resources for ethics consultation and advice.

Brain organoids and the need for ethical inquiry

Biomedical research on cell and animal models requires extensive ethics oversight systems that complement those for human research. Our research on the ethical and policy issues of human brain organoid research provides a good example of the complexities of biomedical research and the infrastructure and oversight mechanisms necessary to support it.

Organoid research is increasing in importance, as the FDA wants to expand its use as an alternative to using animals to test new drugs before administering them to humans. Because these models can simulate brain structure and function, brain organoid research is integral to developing and testing potential treatments for brain diseases and conditions like Alzheimer’s, Parkinson’s and cancer. Brain organoids are also useful for personalized and regenerative medicine, artificial intelligence, brain-computer interfaces and other biotechnologies.

Brain organoids are built on knowledge about the fundamentals of biology that was developed primarily in universities receiving federal funding. Organoid technology began in 1907 with research on sponge cells, and continued in the 1980s with advances in stem cell research. Since researchers generated the first human organoid in 2009, the field has rapidly expanded.

Fluorescent dots forming the outline of a sphere
Brain organoids have come a long way since their beginnings over a century ago.
Madeline Andrews, Arnold Kriegstein’s lab, UCSF, CC BY-ND

These advances were only possible through federally supported research infrastructure, which helps ensure the quality of all biomedical research. Indirect costs cover operational expenses necessary to maintain research safety and ethics, including utilities, administrative support, biohazard handling and regulatory compliance. In these ways, federally supported research infrastructure protects and promotes the scientific and ethical value of biotechnologies like brain organoids.

Brain organoid research requires significant scientific and ethical inquiry to safely reach its future potential. It raises potential moral and legal questions about donor consent, the extent to which organoids should be grown and how they should be disposed, and consciousness and personhood. As science progresses, infrastructure for oversight can help ensure these ethical and societal issues are addressed.

New frontiers in scientific research

Since World War II, there has been bipartisan support for scientific innovation, in part because it is an economic and national security imperative. As Harvard University President Alan Garber recently wrote, “[n]ew frontiers beckon us with the prospect of life-changing advances. … For the government to retreat from these partnerships now risks not only the health and well-being of millions of individuals but also the economic security and vitality of our nation.”

Cuts to research overhead may seem like easy savings, but it fails to account for the infrastructure that provides essential support for scientific innovation. The investment the NIH has put into academic research is significantly paid forward, adding nearly US$95 billion to local economies in fiscal year 2024, or $2.46 for every $1 of grant funding. NIH funding had also supported over 407,700 jobs that year.

President Donald Trump pledged to “unleash the power of American innovation” to battle brain-based diseases when he accepted his second Republican nomination for president. Around 6.7 million Americans live with Alzheimer’s, and over a million more suffer from Parkinson’s. Hundreds of thousands of Americans are diagnosed with aggressive brain cancers each year, and 20% of the population experiences varying forms of mental illness at any one time. These numbers are expected to grow considerably, possibly doubling by 2050.

Organoid research is just one of the essential components in the process of learning about the brain and using that knowledge to find better treatment for diseases affecting the brain.

Science benefits society only if it is rigorous, ethically conducted and fairly funded. Current NIH policy directives and steep cuts to the agency’s size and budget, along with attacks on universities, undermine globally shared goals of increasing understanding and improving human health.

The federal system of overseeing and funding biomedical science may need a scalpel, but to defund efforts based on “efficiency” is to wield a chainsaw.The Conversation

Christine Coughlin, Professor of Law, Wake Forest University and Nancy M. P. King, Emeritus Professor of Social Sciences and Health Policy, Wake Forest University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Science requires ethical oversight – without federal dollars, society’s health and safety are at risk appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Center-Left

This content reflects a center-left perspective by critically examining the Trump administration’s significant cuts to NIH funding and their potentially harmful effects on medical research and ethical oversight. The article emphasizes the importance of federal support for scientific innovation and ethical standards in biomedical research, portraying the administration’s actions as detrimental. While it acknowledges bipartisan support for science historically, it frames recent conservative-led policies as undermining scientific progress and public health. The tone and focus align with a viewpoint that supports government investment in science and regulation to protect ethical standards.

Continue Reading

The Conversation

Nitrous oxide recreational use is linked to brain damage and sudden death − but ‘laughing gas’ is still sold all over the US

Published

on

theconversation.com – Andrew Yockey, Assistant Professor of Public Health, University of Mississippi – 2025-05-09 07:48:00



Nitrous oxide, commonly known as laughing gas, is increasingly being used recreationally, especially among young people, despite its potentially deadly effects. The gas is sold in cartridges, often under names like “Galaxy Gas” and “Miami Magic,” and is available in stores and online. Frequent use can cause severe health issues, such as cognitive impairment, memory loss, and irreversible brain damage. The number of deaths linked to nitrous oxide abuse has more than doubled in recent years. Despite its dangers, nitrous oxide remains unregulated in many areas, with some states enacting restrictions or bans on its recreational use. Research and prevention efforts are essential to curbing the rise in misuse.

Nitrous oxide is often inhaled with a balloon.
Matt Cardy/Getty Images News

Andrew Yockey, University of Mississippi

The U.S. Food and Drug Administration is warning Americans about the ever-increasing and potentially deadly recreational use of nitrous oxide products, particularly among young people.

Marketed with names like “Galaxy Gas” and “Miami Magic,” and often sold in steel cartridges known as “whippets,” these products are cheap and readily available at gas stations, convenience stores, smoke shops and major retail outlets, including Walmart. They’re also sold online.

As an assistant professor of public health who studies these products, I’m aware of how dangerous they can be.

Recreational and continued use of nitrous oxide can cause a wide range of serious health problems, and in some cases, death.

A long list of potential harms

The list of serious side effects from frequent use is long. It includes: cognitive impairment, memory problems, hallucinations, headaches, lightheadedness, mood disturbances, blood clots, limb weakness, trouble walking, peripheral neuropathy, impaired bowel or bladder function, spinal cord degeneration and irreversible brain damage. Vitamin B-12 deficiency is common and can lead to nerve and brain damage.

Deaths in the U.S. attributed to abuse of nitrous oxide jumped more than 100% between 2019 and 2023; over a five-year period, emergency department visits rose 32%.

All told, more than 13 million Americans have misused nitrous oxide at least once during their lifetimes. This includes children: In 2024, just over 4% of eighth graders and about 2% of 12th graders said they’ve tried inhalants. Nitrous oxide is among the most abused of these inhalants due to its low cost, easy availability and commercial appeal – one flavor of the gas is named “pink bubble gum.”

YouTube video
Pure nitrous, inhaled for a quick high, can be lethal.

Laughing gas parties

Because of legal loopholes in the Food and Drug Administration Act, nitrous oxide remains unregulated. What’s more, U.S. scientists have done relatively little research on its abuse, partly because the public still perceives the substance as benign, particularly when compared with alcohol.

The few studies on the use of nitrous oxide are limited mainly to case reports – that is, a report on a single patient. Although limited in scope, they’re alarming.

More thorough studies are available in the United Kingdom and Europe, where there’s even more demand for the product. One example: Over a 20-year period, 56 people died in England and Wales after recreational use. Typically, deaths occur from hypoxia, which is the lack of oxygen to the brain, or accidents occurring while intoxicated by the gas, such as car wrecks or falls.

Americans have known about the effects of nitrous oxide for centuries. Before becoming a medicinal aid, nitrous oxide was popular at “laughing gas” parties during the late 1700s.

Physicians began using it in the U.S. around the mid-19th century after Horace Wells, a dentist, attended a stage show – called “Laughing Gas Entertainment” – and saw the numbing effect that nitrous oxide had on audience volunteers. By coincidence, Wells was having a wisdom tooth removed the next day, so he tried the gas during his procedure. The nitrous oxide worked; Wells said he felt no pain. Thereafter, medicinal use of the gas was gradually accepted.

Today, nitrous oxide is often used in dentist offices. It’s safe under a doctor’s supervision as a mild sedative that serves as a pain reliever and numbing agent.
Nitrous oxide also benefits some patients with severe psychiatric disorders, including treatment-resistant depression and bipolar depression. It may also help with anxiety and pain management.

Bans and restrictions

No federal age restrictions exist for purchasing nitrous oxide products, although a few states have passed age limits.

As of May 2025, four U.S. states – Louisiana, Michigan, Alabama and California – have banned the recreational use of nitrous oxide, and more than 30 states are working on legislation to ban or at least restrict sale of the products. In addition, numerous lawsuits filed against the manufacturers are in court.

Research shows school prevention programs help keep kids from using these products. So does early screening of patients by primary care and mental health physicians. The sooner they can intervene, the more likely that ongoing therapy will work.

Through appropriate legislation, regulation, education and intervention, nitrous oxide abuse can be slowed or stopped. Otherwise, these products – with their sleek packaging and attractive social media campaigns that obscure their dangers – remain a growing threat to our children.The Conversation

Andrew Yockey, Assistant Professor of Public Health, University of Mississippi

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Nitrous oxide recreational use is linked to brain damage and sudden death − but ‘laughing gas’ is still sold all over the US appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The content presents a fact-based and balanced view on the recreational use of nitrous oxide, emphasizing public health concerns and the need for regulation. It relies heavily on scientific studies, expert opinions, and governmental data without advocating for extreme positions. The article calls for sensible legislation, education, and intervention to mitigate harm, reflecting pragmatic concern rather than ideological bias toward either left or right political perspectives.

Continue Reading

The Conversation

Contaminated milk from one plant in Illinois sickened thousands with Salmonella in 1985 − as outbreaks rise in the US, lessons from this one remain true

Published

on

theconversation.com – Michael Petros, Clinical Assistant Professor of Environmental and Occupational Health Sciences, University of Illinois Chicago – 2025-05-07 07:34:00

A valve that mixed raw milk with pasteurized milk at Hillfarm Dairy may have been the source of contamination. This was the milk processing area of the plant.
AP Photo/Mark Elias

Michael Petros, University of Illinois Chicago

In 1985, contaminated milk in Illinois led to a Salmonella outbreak that infected hundreds of thousands of people across the United States and caused at least 12 deaths. At the time, it was the largest single outbreak of foodborne illness in the U.S. and remains the worst outbreak of Salmonella food poisoning in American history.

Many questions circulated during the outbreak. How could this contamination occur in a modern dairy farm? Was it caused by a flaw in engineering or processing, or was this the result of deliberate sabotage? What roles, if any, did politics and failed leadership play?

From my 50 years of working in public health, I’ve found that reflecting on the past can help researchers and officials prepare for future challenges. Revisiting this investigation and its outcome provides lessons on how food safety inspections go hand in hand with consumer protection and public health, especially as hospitalizations and deaths from foodborne illnesses rise.

Contamination, investigation and intrigue

The Illinois Department of Public Health and the U.S. Centers for Disease Control and Prevention led the investigation into the outbreak. The public health laboratories of the city of Chicago and state of Illinois were also closely involved in testing milk samples.

Investigators and epidemiologists from local, state and federal public health agencies found that specific lots of milk with expiration dates up to April 17, 1985, were contaminated with Salmonella. The outbreak may have been caused by a valve at a processing plant that allowed pasteurized milk to mix with raw milk, which can carry several harmful microorganisms, including Salmonella.

Overall, labs and hospitals in Illinois and five other Midwest states – Indiana, Iowa, Michigan, Minnesota and Wisconsin – reported over 16,100 cases of suspected Salmonella poisoning to health officials.

To make dairy products, skimmed milk is usually separated from cream, then blended back together in different levels to achieve the desired fat content. While most dairies pasteurize their products after blending, Hillfarm Dairy in Melrose Park, Illinois, pasteurized the milk first before blending it into various products such as skim milk and 2% milk.

Subsequent examination of the production process suggested that Salmonella may have grown in the threads of a screw-on cap used to seal an end of a mixing pipe. Investigators also found this strain of Salmonella 10 months earlier in a much smaller outbreak in the Chicago area.

Microscopy image of six rod-shaped bacteria against a black background
Salmonella is a common cause of food poisoning.
Volker Brinkmann/Max Planck Institute for Infection Biology via PLoS One, CC BY-SA

Finding the source

The contaminated milk was produced at Hillfarm Dairy in Melrose Park, which was operated at the time by Jewel Companies Inc. During an April 3 inspection of the company’s plant, the Food and Drug Administration found 13 health and safety violations.

The legal fallout of the outbreak expanded when the Illinois attorney general filed suit against Jewel Companies Inc., alleging that employees at as many as 18 stores in the grocery chain violated water pollution laws when they dumped potentially contaminated milk into storm sewers. Later, a Cook County judge found Jewel Companies Inc. in violation of the court order to preserve milk products suspected of contamination and maintain a record of what happened to milk returned to the Hillfarm Dairy.

Political fallout also ensued. The Illinois governor at the time, James Thompson, fired the director of the Illinois Public Health Department when it was discovered that he was vacationing in Mexico at the onset of the outbreak and failed to return to Illinois. Notably, the health director at the time of the outbreak was not a health professional. Following this episode, the governor appointed public health professional and medical doctor Bernard Turnock as director of the Illinois Department of Public Health.

In 1987, after a nine-month trial, a jury determined that Jewel officials did not act recklessly when Salmonella-tainted milk caused one of the largest food poisoning outbreaks in U.S. history. No punitive damages were awarded to victims, and the Illinois Appellate Court later upheld the jury’s decision.

YouTube video
Raw milk is linked to many foodborne illnesses.

Lessons learned

History teaches more than facts, figures and incidents. It provides an opportunity to reflect on how to learn from past mistakes in order to adapt to future challenges. The largest Salmonella outbreak in the U.S. to date provides several lessons.

For one, disease surveillance is indispensable to preventing outbreaks, both then and now. People remain vulnerable to ubiquitous microorganisms such as Salmonella and E. coli, and early detection of an outbreak could stop it from spreading and getting worse.

Additionally, food production facilities can maintain a safe food supply with careful design and monitoring. Revisiting consumer protections can help regulators keep pace with new threats from new or unfamiliar pathogens.

Finally, there is no substitute for professional public health leadership with the competence and expertise to respond effectively to an emergency.The Conversation

Michael Petros, Clinical Assistant Professor of Environmental and Occupational Health Sciences, University of Illinois Chicago

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Contaminated milk from one plant in Illinois sickened thousands with Salmonella in 1985 − as outbreaks rise in the US, lessons from this one remain true appeared first on theconversation.com



Note: The following A.I. based commentary is not part of the original article, reproduced above, but is offered in the hopes that it will promote greater media literacy and critical thinking, by making any potential bias more visible to the reader –Staff Editor.

Political Bias Rating: Centrist

The article provides an analytical, factual recounting of the 1985 Salmonella outbreak, with an emphasis on public health, safety standards, and lessons learned from past mistakes. It critiques the failures in leadership and oversight during the incident but avoids overt ideological framing. While it highlights political accountability, particularly the firing of a public health official and the appointment of a medical professional, it does so in a balanced manner without assigning blame to a specific political ideology. The content stays focused on the public health aspect and the importance of professional leadership, reflecting a centrist perspective in its delivery.

Continue Reading

Trending