Connect with us

The Conversation

Fossilized footprints reveal 2 extinct hominin species living side by side 1.5 million years ago

Published

on

theconversation.com – Anna K. Behrensmeyer, Senior Research Geologist and Curator of Vertebrate Paleontology, Smithsonian Institution – 2024-11-28 13:01:00

Excavating the new trackway site, with footprints from hominins, birds and other animals visible in foreground.
Neil Roach

Anna K. Behrensmeyer, Smithsonian Institution; Kevin Hatala, Chatham University, and Purity Kiura, National Museums of Kenya

Human footprints stir the imagination. They invite you to follow, to guess what someone was doing and where they were going. Fossilized footprints preserved in rock do the same – they record instants in the lives of many different extinct organisms, back to the earliest creatures that walked on four feet, 380 million years ago.

Discoveries in eastern Africa of tracks made by hominins – our ancient relatives – are telling paleontologists like ourselves about the behavior of hominin species that walked on two feet and resembled us but were not yet human like we are today. Our new research focuses on footprints that amazingly record two different species of hominins walking along the same Kenyan lakeshore at the same time, roughly 1.5 million years ago.

Studying ancient tracks like these fills in exciting pieces of the human evolution story because they provide evidence for hominin behavior and locomotion that scientists cannot learn from fossilized bones.

Finding first fossilized footprints in Kenya

The first discovery of tracks of early hominins in Kenya’s Lake Turkana region happened by chance in 1978. A team led by one of us (Behrensmeyer) and paleoecologist Léo Laporte was exploring the geology and fossils of the rich paleontological record of East Turkana. We focused on documenting the animals and environments represented in one “time slice” of widespread sediments deposited about 1.5 million years ago.

man squats on excavation surface, brushing with paintbrush
Kimolo Mulwa at the site of the first hominin footprint discovery in 1978. Deep, sand-filled depressions to his left show hippopotamus tracks in cross section.
Anna K. Behrensmeyer

We collected fossils from the surface and dug geological step trenches to document the sediment layers that preserved the fossils. The back wall of one of the trenches showed deep depressions in a layer of solidified mud that we thought might be hippo tracks. We were curious about what they looked like from the top down – what scientists call the “plan view” – so we decided to expose 1 square meter of the footprint surface next to the trench.

When I returned from more fossil bone surveys, Kimolo Mulwa, one of the expert Kenyan field assistants on the project, had carefully excavated the top of the mudstone layer and there was a broad smile on his face. He said, “Mutu!” – meaning “person” – and pointed to a shallow humanlike print in among the deep hippo tracks.

indentations on flat sediment surface
The excavated surface shows the hominin trackway along with footprints of hippos, a large bird and other animals. For the photo, scientists filled the hominin tracks and a few other footprints with dark sand so they would stand out against the light-colored sediment.
Anna K. Behrensmeyer

I could hardly believe it, but, yes, a humanlike footprint was clearly recognizable on the excavated surface. And there were more hominin tracks, coming our way out of the strata. It was awe-inspiring to realize we were connecting with a moment in the life of a hominin that walked here 1½ million years ago.

We excavated more of the surface and eventually found seven footprints in a line, showing that the hominin had walked eastward out of softer mud onto a harder, likely shallower surface. At one point the individual’s left foot had slipped into a deep hippo print and the hominin caught itself on its right foot to avoid falling – we could see this clearly along the trackway.

Comparison of a fossil footprint and a modern one
Comparison of the best-preserved 1978 hominin track, left, with a modern track (women’s size 7) made by Behrensmeyer on the muddy shoreline of Lake Turkana. The white objects inside the fossil footprint are calcified fillings of worm burrows or roots that formed in the sediment after the track was buried.
Anna K. Behrensmeyer

Even today on the shore of modern Lake Turkana, it’s easy to slip into hippo prints, especially if the water is a bit cloudy. We joked about being sorry our hominin track-maker didn’t fall on its hands, or face, so we could have a record of those parts, too.

Another set of tracks

Over four decades later, in 2021, paleontologist Louise Leakey and her Kenyan research team were excavating hominin fossils discovered in the same area when team member Richard Loki uncovered a portion of another hominin trackway. Leakey invited one of us (Hatala) and paleoanthropologist Neil Roach to excavate and study the new trackway, because of our experience working on other hominin footprint sites.

3D image of footprints pressed into a surface
A 3D image of part of the 2021 excavated surface made by photogrammetry, which shows the tracks of two hominin species crossing.
Kevin Hatala

The team, including 10 expert Kenyan field researchers led by Cyprian Nyete, excavated the surface and documented the tracks with photogrammetry – a method for 3D imaging. This is the best way to collect track surfaces because the sediments are not hard enough – what geologists call lithified – to remove from the ground safely and take to a museum.

The newly discovered tracks were made approximately 1.5 million years ago. They occur at an earlier stratigraphic level than the ones we found in 1978 and are about a hundred thousand years older, based on dating of volcanic deposits in the East Turkana strata.

aerial view of about a dozen people standing in a curve on a rocky bare landscape
Research team members along the perimeter of the ancient footprint trackway.
Louise N. Leakey

Who was passing through?

These footprints are especially exciting because careful anatomical and functional analysis of their shapes shows that two different kinds of hominins made tracks on the same lakeshore, within hours to a few days of each other, possibly even within minutes!

We know the footprints were made very close together in time because experiments on the modern shoreline of Lake Turkana show that a muddy surface suitable for preserving clear tracks doesn’t last long before being destroyed by waves or cracked by exposure to the Sun.

fossilized indentations of footprints receding into distance on sandy-looking ground
A trackway of footprints scientists hypothesize were created by a Paranthropus boisei individual.
Neil T. Roach

This is the first time ever that scientists have been able to say that Homo erectus and Paranthropus boisei – one our likely ancestor and the other a more distant relative – actually coexisted at the same time and place. Along with many different species of mammals, they were both members of the ancient community that inhabited the Turkana Basin.

Not only that, but with the new tracks as references, our analyses suggest that other previously described hominin tracks in the same region indicate that these two hominins coexisted in this area of the Turkana Basin for at least 200,000 years, repeatedly leaving their footprints in the shallow lake margin habitat.

Other animals left tracks there as well – giant storks, smaller birds such as pelicans, antelope and zebra, hippos and elephants – but hominin tracks are surprisingly common for a land-based species. What were they doing, returning again and again to this habitat, when other primates, such as baboons, apparently did not visit the lakeshore and leave tracks there?

silhouette of a tree with circles for about 20 hominin species, showing their relationships
The track-making species Homo erectus and Paranthropus boisei are on two different branches of the hominin family tree.
Smithsonian Human Origins Program, modified by author from original artwork

These footprints provoke new thoughts and questions about our early relatives. Were they eating plants that grew on the lakeshore? Some paleontologists have proposed this possibility for the robust Paranthropus boisei because the chemistry of its teeth indicate a specific herbivorous diet of grasslike and reedlike plants. The same chemical tests on teeth of Homo erectus – the ancestral species to Homo sapiens – show a mixed diet that likely included animal protein as well as plants.

The lake margin habitat offered food in the form of reeds, freshwater bivalves, fish, birds and reptiles such as turtles and crocodiles, though it could have been dangerous for bipedal primates 4 or 5 feet (1.2 to 1.5 meters) tall. Even today, people living along the shore occasionally are attacked by crocodiles, and local hippos can be aggressive as well. So, whatever drew the hominins to the lakeshore must have been worth some risk.

For now it’s impossible to know exactly how the two species interacted. New clues about their behavior could be revealed with future excavations of more trackway surfaces. But it is fascinating to imagine these two hominin “cousins” being close neighbors for hundreds of thousands of years.

people carrying water buckets at a sandy construction site in open landscape
Construction of the Ileret footprint site museum, with Daasanach women carrying water for mixing concrete.
National Museums of Kenya Audio Visual

Ancient footprints you can visit

Earlier excavations of hominin trackways near a village called Ileret, 25 miles (40 km) to the north of our new site, are being developed as a museum through a project by the National Museums of Kenya. The public, the local Daasanach people, educational groups and tourists will be able to see a large number of 1.5-million-year-old hominin footprints on one excavated surface.

That layer preserves tracks of at least eight hominin individuals, and we now believe they represent members of both Homo erectus and Paranthropus boisei. Among these is a subset of individuals, all about the same adult size, who were moving in the same direction and appear to have been traveling as a group along the lake margin.

The museum built over the track site is designed to prevent erosion of the site and to protect it from seasonal rains. A community outreach and education center associated with the museum aims to engage local educational groups and young people in learning and teaching others about this exceptional record of human prehistory preserved in their backyard. The new site museum is scheduled to open in January 2025.The Conversation

Anna K. Behrensmeyer, Senior Research Geologist and Curator of Vertebrate Paleontology, Smithsonian Institution; Kevin Hatala, Associate Professor of Biology, Chatham University, and Purity Kiura, Chief Research Scientist in Archaeology and Heritage, National Museums of Kenya

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Fossilized footprints reveal 2 extinct hominin species living side by side 1.5 million years ago appeared first on theconversation.com

The Conversation

NASA’s crew capsule had heat shield issues during Artemis I − an aerospace expert on these critical spacecraft components

Published

on

theconversation.com – Marcos Fernandez Tous, Assistant Professor of Space Studies, University of North Dakota – 2024-12-12 07:46:00

Marcos Fernandez Tous, University of North Dakota

Off the coast of Baja California in December 2022, sun sparkled over the rippling sea as waves sloshed around the USS Portland dock ship. Navy officials on the deck scrutinized the sky in search of a sign. The glow appeared suddenly.

A tiny spot at first, it gradually grew to a round circle falling at a great speed from the fringes of space. It was NASA’s Orion capsule, which would soon end the 25-day Artemis I mission around and beyond the Moon with a fiery splashdown into the ocean.

Orion’s reentry followed a sharply angled trajectory, during which the capsule fell at an incredible speed before deploying three red and white parachutes. As the mission finished its trip of over 270,000 miles (435,000 kilometers), it looked to those on the deck of the USS Portland like the capsule had made it home in a single piece.

As the recovery crew lifted Orion to the carrier’s deck, shock waves ruffled across the capsule’s surface. That’s when crew members started to spot big cracks on Orion’s lower surface, where the capsule’s exterior bonds to its heat shield.

The Orion spacecraft splashed down in December 2022, marking the end of the Artemis I mission.

But why wouldn’t a shield that has endured temperatures of about 5,000 degrees Fahrenheit (2,760 degrees Celsius) sustain damage? Seems only natural, right?

This mission, Artemis I, was uncrewed. But NASA’s ultimate objective is to send humans to the Moon in 2026. So, NASA needed to make sure that any damage to the capsule– even its heat shield, which is meant to take some damage – wouldn’t risk the lives of a future crew.

On Dec. 11, 2022 – the time of the Artemis I reentry – this shield took severe damage, which delayed the next two Artemis missions. While engineers are now working to prevent the same issues from happening again, the new launch date targets April 2026, and it is coming up fast.

As a professor of aerospace technology, I enjoy researching how objects interact with the atmosphere. Artemis I offers one particularly interesting case – and an argument for why having a functional heat shield is critical to a space exploration mission.

A conical spacecraft with the NASA worm logo in space, with Earth and the Moon shown in the background.
NASA’s Orion spacecraft had a view of both Earth and the Moon during the Artemis I mission.
NASA via AP

Taking the heat

To understand what exactly happened to Orion, let’s rewind the story. As the capsule reentered Earth’s atmosphere, it started skimming its higher layers, which acts a bit like a trampoline and absorbs part of the approaching spacecraft’s kinetic energy. This maneuver was carefully designed to gradually decrease Orion’s velocity and reduce the heat stress on the inner layers of the shield.

After the first dive, Orion bounced back into space in a calculated maneuver, losing some of its energy before diving again. This second dive would take it to lower layers with denser air as it neared the ocean, decreasing its velocity even more.

While falling, the drag from the force of the air particles against the capsule helped reduced its velocity from about 27,000 miles per hour (43,000 kilometers per hour) down to about 20 mph (32 kph). But this slowdown came at a cost – the friction of the air was so great that temperatures on the bottom surface of the capsule facing the airflow reached 5,000 degrees Fahrenheit (2,760 degrees Celsius).

At these scorching temperatures, the air molecules started splitting and a hot blend of charged particles, called plasma, formed. This plasma radiated energy, which you could see as red and yellow inflamed air surrounding the front of the vehicle, wrapping around it backward in the shape of a candle.

No material on Earth can stand this hellish environment without being seriously damaged. So, the engineers behind these capsules designed a layer of material called a heat shield to be sacrificed through melting and evaporation, thus saving the compartment that would eventually house astronauts.

By protecting anyone who might one day be inside the capsule, the heat shield is a critical component.

A large round shield covered in small tiles sitting in a laboratory.
The Orion heat shield is covered in tiles made of a material that will burn up when exposed to extreme heat.
NASA/Isaac Watson

In the form of a shell, it is this shield that encapsulates the wide end of the spacecraft, facing the incoming airflow – the hottest part of the vehicle. It is made of a material that is designed to evaporate and absorb the energy produced by the friction of the air against the vehicle.

The case of Orion

But what really happened with Orion’s heat shield during that 2022 descent?

In the case of Orion, the heat shield material is a composite of a resin called Novolac – a relative to the Bakelite which some firearms are made of – absorbed in a honeycomb structure of fiberglass threads.

A molecule made up of atoms arranged in linked hexagons.
Novolac, the material that makes up Orion’s heat shield, is made up of atoms arranged in linked hexagons.
Smokefoot/Wikimedia Commons, CC BY-SA

As the surface is exposed to the heat and airflow, the resin melts and recedes, exposing the fiberglass. The fiberglass reacts with the surrounding hot air, producing a black structure called char. This char then acts as a second heat barrier.

NASA used the same heat shield design for Orion as the Apollo capsule. But during the Apollo missions, the char structure didn’t break like it did on Orion.

After nearly two years spent analyzing samples of the charred material, NASA concluded that the Orion project team had overestimated the heat flow as the craft skimmed the atmosphere upon reentry.

As Orion approached the upper layers of the atmosphere, the shield started melting and produced gases that may have escaped through pores in the material. Then, when the capsule gained altitude again, the outer layers of the resin froze, trapping the heat from the first dive inside. This heat vaporized the resin.

When the capsule dipped into the atmosphere the second time, the gas expanded before finding a way out as it heated again – kind of like how a frozen lake thaws upward from the bottom – and its escape produced cracks in the capsule’s surface where the char structure got damaged. These were the cracks the recovery crew saw on the capsule after it splashed down.

In a Dec. 5, 2024, press conference, NASA officials announced that the Artemis II mission will be designed with a modified reentry trajectory to prevent heat from accumulating.

For Artemis III, which is planned to launch in 2027, NASA intends to use new manufacturing methods for the shield, making it more permeable. The outside of the capsule will still get very hot during reentry, and the heat shield will still evaporate. But these new methods will help keep the astronauts cozy in the capsule all the way through splashdown.

Chonglin Zhang, assistant professor of mechanical engineering at the University of North Dakota, assisted in researching this article.The Conversation

Marcos Fernandez Tous, Assistant Professor of Space Studies, University of North Dakota

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post NASA’s crew capsule had heat shield issues during Artemis I − an aerospace expert on these critical spacecraft components appeared first on theconversation.com

Continue Reading

The Conversation

Why winter makes you more vulnerable to colds – a public health nurse explains the science behind the season

Published

on

theconversation.com – Libby Richards, Professor of Nursing, Purdue University – 2024-12-12 07:45:00

Respiratory viruses rise in the wintertime, but not because people are outside in the cold.
gilaxia/E+ via Getty Images

Libby Richards, Purdue University

You’ve probably heard “Don’t go outside in the winter with your hair wet or without a coat; you’ll catch a cold.”

That’s not exactly true. As with many things, the reality is more complicated. Here’s the distinction: Being cold isn’t why you get a cold. But it is true that cold weather makes it easier to catch respiratory viruses such as the cold and flu.

Research also shows that lower temperatures are associated with higher COVID-19 rates.

As a professor of nursing with a background in public health, I’m often asked about infectious disease spread, including the relationship between cold and catching a cold. So here’s a look at what actually happens.

Many viruses, including rhinovirus – the usual culprit for the common cold – influenza, and SARS-CoV-2, the virus that causes COVID-19, remain infectious longer and replicate faster in colder temperatures and at lower humidity levels. This, coupled with the fact that people spend more time indoors and in close contact with others during cold weather, are common reasons that germs are more likely to spread.

The flu and respiratory syncytial virus, or RSV, tend to have a defined fall and winter seasonality. However, because of the emergence of new COVID-19 variants and immunity from previous infections and vaccinations decreasing over time, COVID-19 is not the typical cold-weather respiratory virus. As a case in point, COVID-19 infection rates have surged every summer since 2020.

Virus transmission is easier when it’s cold

More specifically, cold weather can change the outer membrane of the influenza virus, making it more solid and rubbery. Scientists believe that the rubbery coating makes person-to-person transmission of the virus easier.

It’s not just cold winter air that causes a problem. Air that is dry in addition to cold has been linked to flu outbreaks. That’s because dry winter air further helps the influenza virus to remain infectious longer. Dry air, which is common in the winter, causes the water found in respiratory droplets to evaporate more quickly. This results in smaller particles, which are capable of lasting longer and traveling farther after you cough or sneeze.

How your immune system responds during cold weather also matters a great deal. Inhaling cold air may adversely affect the immune response in your respiratory tract, which makes it easier for viruses to take hold. That’s why wearing a scarf over your nose and mouth may help prevent a cold because it warms the air that you inhale.

Cold weather can affect nasal immunity.

Also, most people get less sunlight in the winter. That is a problem because the sun is a major source of vitamin D, which is essential for immune system health. Physical activity, another factor, also tends to drop during the winter. People are three times more likely to delay exercise in snowy or icy conditions.

Instead, people spend more time indoors. That usually means more close contact with others, which leads to disease spread. Respiratory viruses generally spread within a 6-foot radius of an infected person.

In addition, cold temperatures and low humidity dry out your eyes and the mucous membranes in your nose and throat. Because viruses that cause colds, flu and COVID-19 are typically inhaled, the virus can attach more easily to these impaired, dried-out passages.

What you can do

The bottom line is that being wet and cold doesn’t make you sick. That being said, there are strategies to help prevent illness all year long:

Person's hands covered with suds under a running faucet.
Handwashing is a time-tested strategy for reducing the spread of germs at any time of year.
Mike Kemp/Tetra Images via Getty Images

Following these tips can ensure you have a healthy winter season.

This is an updated version of an article originally published on Dec. 15, 2020.The Conversation

Libby Richards, Professor of Nursing, Purdue University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Why winter makes you more vulnerable to colds – a public health nurse explains the science behind the season appeared first on theconversation.com

Continue Reading

The Conversation

Blood tests are currently one-size-fits-all − machine learning can pinpoint what’s truly ‘normal’ for each patient

Published

on

theconversation.com – Brody H. Foy, Assistant Professor of Laboratory Medicine and Pathology, University of Washington – 2024-12-11 10:03:00

Blood tests are essential tools in medicine.
Bloomberg Creative/Bloomberg Creative Photos via Getty Images

Brody H. Foy, University of Washington

If you’ve ever had a doctor order a blood test for you, chances are that they ran a complete blood count, or CBC. One of the most common blood tests in the world, CBC tests are run billions of times each year to diagnose conditions and monitor patients’ health.

But despite the test’s ubiquity, the way clinicians interpret and use it in the clinic is often less precise than ideal. Currently, blood test readings are based on one-size-fits-all reference intervals that don’t account for individual differences.

I am a mathematician at the University of Washington School of Medicine, and my team studies ways to use computational tools to improve clinical blood testing. To develop better ways to capture individual patient definitions of “normal” lab values, my colleagues and I in the Higgins Lab at Harvard Medical School examined 20 years of blood count tests from tens of thousands of patients from both the East and West coasts.

In our newly published research, we used machine learning to identify healthy blood count ranges for individual patients and predict their risk of future disease.

Clinical tests and complete blood counts

Many people commonly think of clinical tests as purely diagnostic. For example, a COVID-19 or a pregnancy test comes back as either positive or negative, telling you whether you have a particular condition. However, most tests don’t work this way. Instead, they measure a biological trait that your body continuously regulates up and down to stay within certain bounds.

Your complete blood count is also a continuum. The CBC test creates a detailed profile of your blood cells – such as how many red blood cells, platelets and white blood cells are in your blood. These markers are used every day in nearly all areas of medicine.

Blood tube on top of print out of lab results
You probably had a CBC test run for your annual physical.
peepo/E+ via Getty Images

For example, hemoglobin is an iron-containing protein that allows your red blood cells to carry oxygen. If your hemoglobin levels are low, it might mean you are iron deficient.

Platelets are cells that help form blood clots and stop bleeding. If your platelet count is low, it may mean you have some internal bleeding and your body is using platelets to help form blood clots to plug the wound.

White blood cells are part of your immune system. If your white cell count is high, it might mean you have an infection and your body is producing more of these cells to fight it off.

Normal ranges and reference intervals

But this all raises the question: What actually counts as too high or too low on a blood test?

Traditionally, clinicians determine what are called reference intervals by measuring a blood test in a range of healthy people. They usually take the middle 95% of these healthy values and call that “normal,” with anything above or below being too low or high. These normal ranges are used nearly everywhere in medicine.

But reference intervals face a big challenge: What’s normal for you may not be normal for someone else.

Nearly all blood count markers are heritable, meaning your genetics and environment determine much of what the healthy value for each marker would be for you.

At the population level, for example, a normal platelet count is approximately between 150 and 400 billion cells per liter of blood. But your body may want to maintain a platelet count of 200 – a value called your set point. This means your normal range might only be 150 to 250.

Differences between a patient’s true normal range and the population-based reference interval can create problems for doctors. They may be less likely to diagnose a disease if your set point is far from a cutoff. Conversely, they may run unnecessary tests if your set point is too close to a cutoff.

Lab tests are interpreted based on reference intervals.

Defining what’s normal for you

Luckily, many patients get blood counts each year as part of routine checkups. Using machine learning models, my team and I were able to estimate blood count set points for over 50,000 patients based on their history of visits to the clinic. This allowed us to study how the body regulates these set points and to test whether we can build better ways of personalizing lab test readings.

Over multiple decades, we found that individual normal ranges were about three times smaller than at the population level. For example, while the “normal” range for the white blood cell count is around 4.0 to 11.0 billion cells per liter of blood, we found that most people’s individual ranges were much narrower, more like 4.5 to 7, or 7.5 to 10. When we used these set points to interpret new test results, they helped improve diagnosis of diseases such as iron deficiency, chronic kidney disease and hypothyroidism. We could note when someone’s result was outside their smaller personal range, potentially indicating an issue, even if the result was within the normal range for the population overall.

The set points themselves were strong indicators for future risk of developing a disease. For example, patients with high white blood cell set points were more likely to develop Type 2 diabetes in the future. They were also nearly twice as likely to die of any cause compared with similar patients with low white cell counts. Other blood count markers were also strong predictors of future disease and mortality risk.

In the future, doctors could potentially use set points to improve disease screening and how they interpret new test results. This is an exciting avenue for personalized medicine: to use your own medical history to define what exactly healthy means for you.The Conversation

Brody H. Foy, Assistant Professor of Laboratory Medicine and Pathology, University of Washington

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More

The post Blood tests are currently one-size-fits-all − machine learning can pinpoint what’s truly ‘normal’ for each patient appeared first on theconversation.com

Continue Reading

Trending